Do you want to publish a course? Click here

Geometric theory of flexible and expandable tubes conveying fluid: equations, solutions and shock waves

110   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows inside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular solutions. The theory is derived from a variational treatment of Cosserat rod theory extended to incorporate expandable walls and moving flow inside the tube. The results presented here are useful for biological flows and industrial applications involving high speed motion of gas in flexible tubes.



rate research

Read More

Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In the real-life applications like blood flow, there is often an additional complexity of vorticity being present in the fluid. We present a theory for the dynamics of interaction of fluids and structures. The equations are derived using the variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and unshearable tube with a straight centerline. In the absence of vorticity, our model reduces to previous models considered in the literature, yielding the equations of conservation of fluid momentum, wall momentum and the fluid volume. We show that even when the vorticity is present, but is kept at a constant value, the case of an inextensible, unshearable and straight tube with elastics walls carrying a fluid allows an alternative formulation, reducing to a single compact equation for the back-to-labels map instead of three conservation equations. That single equation shows interesting instability in solutions when the vorticity exceeds a certain threshold. Furthermore, the equation in stable regime can be reduced to Boussinesq-type, KdV and Monge-Amp`ere equations equations in several appropriate limits, namely, the first two in the limit of long time and length scales and the third one in the additional limit of the small cross-sectional area. For the unstable regime, we numerical solutions demonstrate the spontaneous appearance of large oscillations in the cross-sectional area.
We derive the equations of motion for the dynamics of a porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint of incompressibility. As an illustration of the method, the equations of motion for both the elastic matrix and the fluid are derived in the spatial (Eulerian) frame. Such an approach is of relevance e.g. for biological problems, such as sponges in water, where the elastic porous media is highly flexible and the motion of the fluid has a primary role in the motion of the whole system. We then analyze the linearized equations of motion describing the propagation of waves through the media. In particular, we derive the propagation of S-waves and P-waves in an isotropic media. We also analyze the stability criteria for the wave equations and show that they are equivalent to the physicality conditions of the elastic matrix. Finally, we show that the celebrated Biots equations for waves in porous media are obtained for certain values of parameters in our models.
Many parts of biological organisms are comprised of deformable porous media. The biological media is both pliable enough to deform in response to an outside force and can deform by itself using the work of an embedded muscle. For example, the recent work (Ludeman et al., 2014) has demonstrated interesting sneezing dynamics of a freshwater sponge, when the sponge contracts and expands to clear itself from surrounding polluted water. We derive the equations of motion for the dynamics of such an active porous media (i.e., a deformable porous media that is capable of applying a force to itself with internal muscles), filled with an incompressible fluid. These equations of motion extend the earlier derived equation for a passive porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint of incompressibility. We then proceed to extend this theory by computing the case when both the active porous media and the fluid are incompressible, with the porous media still being deformable, which is often the case for biological applications. For the particular case of a uniform initial state, we rewrite the equations of motion in terms of two coupled telegraph-like equations for the material (Lagrangian) particles expressed in the Eulerian frame of reference, particularly suitable for numerical simulations, formulated for both the compressible media/incompressible fluid case and the doubly incompressible case. We derive interesting conservation laws for the motion, perform numerical simulations in both cases and show the possibility of self-propulsion of a biological organism due to particular running wave-like application of the muscle stress.
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.
We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [Haller & Beron-Vera, 2013], objective Eulerian Coherent Structures (OECSs) [Serra & Haller, 2016], material barriers to diffusive transport [Haller et al., 2018, Haller et al., 2019], and constrained diffusion barriers [Haller et al., 2019]. The method builds on ideas developed previously in [Karrasch et al., 2015], but our implementation alleviates a number of shortcomings and allows for the fully automated detection of such vortices on unprecedentedly challenging real-world flow problems, for which specific human interference is absolutely infeasible. Challenges include very large domains and/or parameter spaces. We demonstrate the efficacy of our method in dealing with such challenges on two test cases: first, a parameter study of a turbulent flow, and second, computing material barriers to diffusive transport in the global ocean.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا