Do you want to publish a course? Click here

An upper limit on the strength of the extragalactic magnetic field from ultra-high-energy cosmic-ray anisotropy

79   0   0.0 ( 0 )
 Added by Justin Bray
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

If ultra-high-energy cosmic rays originate from extragalactic sources, the offsets of their arrival directions from these sources imply an upper limit on the strength of the extragalactic magnetic field. The Pierre Auger Collaboration has recently reported that anisotropy in the arrival directions of cosmic rays is correlated with several types of extragalactic objects. If these cosmic rays originate from these objects, they imply a limit on the extragalactic magnetic field strength of B < 0.7-2.2 x 10^-9 (lambda_B / 1 Mpc)^-1/2 G for coherence lengths lambda_B < 100 Mpc and B < 0.7-2.2 x 10^-10 G at larger scales. This is comparable to existing upper limits at lambda_B = 1 Mpc, and improves on them by a factor 4-12 at larger scales. The principal source of uncertainty in our results is the unknown cosmic-ray composition.



rate research

Read More

We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matter distribution and calculate the flux-weighted UHECRs RMS dipole amplitude taking into account the diffusive transport in the intergalactic magnetic field (IGMF). We find that the flux-weighted RMS dipole amplitude is $sim8$% before entering the Galaxy. The amplitude in the [4-8] EeV is only slightly lower $sim 5$%. The required IGMF is of the order of {5-30 nG}, and the UHECR sources must be relatively nearby, within $sim$300 Mpc. The absence of statistically significant signal in the lower energy bin can be explained if the same nuclei specie dominates the composition in both energy bins and diffusion in the Galactic magnetic field (GMF) reduces the dipole of these lower rigidity particles. Photodisintegration of higher energy UHECRs could also reduce somewhat the lower energy dipole.
The Galactic magnetic field, locally observed to be on the order of a few $mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.
(Abridged) Recent results from the Pierre Auger Observatory (PAO) indicate that the composition of ultra-high-energy cosmic rays (UHECRs) with energies above $10^{19}$ eV may be dominated by heavy nuclei. An important question is whether the distribution of arrival directions for such UHECR nuclei can exhibit observable anisotropy or positional correlations with their astrophysical source objects despite the expected strong deflections by intervening magnetic fields. For this purpose, we have simulated the propagation of UHECR nuclei including models for both the extragalactic magnetic field and the Galactic magnetic field. Assuming that only iron nuclei are injected steadily from sources with equal luminosity and spatially distributed according to the observed large scale structure in the local Universe, at the number of events published by the PAO so far, the arrival distribution of UHECRs would be consistent with no auto-correlation at 95% confidence if the mean number density of UHECR sources $n_s >~ 10^{-6}$ Mpc$^{-3}$, and consistent with no cross-correlation with sources within 95% errors for $n_s >~ 10^{-5}$ Mpc$^{-3}$. On the other hand, with 1000 events above $5.5 times 10^{19}$ eV in the whole sky, next generation experiments can reveal auto-correlation with more than 99% probability even for $n_s <~ 10^{-3}$ Mpc$^{-3}$, and cross-correlation with sources with more than 99% probability for $n_s <~ 10^{-4}$ Mpc$^{-3}$. In addition, we find that the contribution of Centaurus A is required to reproduce the currently observed UHECR excess in the Centaurus region. Secondary protons generated by photodisintegration of primary heavy nuclei during propagation play a crucial role in all cases, and the resulting anisotropy at small angular scales should provide a strong hint of the source location if the maximum energies of the heavy nuclei are sufficiently high.
High energy photons from blazars can initiate electromagnetic pair cascades interacting with the extragalactic photon background. The charged component of such cascades is deflected and delayed by extragalactic magnetic fields (EGMF), reducing thereby the observed point-like flux and leading potentially to multi degree images in the GeV energy range. We calculate the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles using a Monte Carlo simulation for the cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT suggests that the EGMF fills at least 60% of space with fields stronger than {cal O}(10^{-16}-10^{-15})G for life times of TeV activity of {cal O}(10^2-10^4)yr. Thus the (non-) observation of GeV extensions around TeV blazars probes the EGMF in voids and puts strong constraints on the origin of EGMFs: Either EGMFs were generated in a space filling manner (e.g. primordially) or EGMFs produced locally (e.g. by galaxies) have to be efficiently transported to fill a significant volume fraction, as e.g. by galactic outflows.
We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of ultra high energy cosmic ray nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the cosmic microwave background radiation, in the present paper we generalize this computation to all relevant background radiations, including infra-red and visible/ultra-violet radiations, collectively referred to as extragalactic background light. The analytic solutions allow transparent physical interpretation of the obtained spectra. Extragalactic background light plays an important role at intermediate energies of ultra high energy cosmic ray nuclei. The most noticeable effect of the extragalactic background light is the low-energy tail in the spectrum of secondary nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا