Do you want to publish a course? Click here

The extragalactic ultra-high energy cosmic-ray dipole

93   0   0.0 ( 0 )
 Added by Noemie Globus
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matter distribution and calculate the flux-weighted UHECRs RMS dipole amplitude taking into account the diffusive transport in the intergalactic magnetic field (IGMF). We find that the flux-weighted RMS dipole amplitude is $sim8$% before entering the Galaxy. The amplitude in the [4-8] EeV is only slightly lower $sim 5$%. The required IGMF is of the order of {5-30 nG}, and the UHECR sources must be relatively nearby, within $sim$300 Mpc. The absence of statistically significant signal in the lower energy bin can be explained if the same nuclei specie dominates the composition in both energy bins and diffusion in the Galactic magnetic field (GMF) reduces the dipole of these lower rigidity particles. Photodisintegration of higher energy UHECRs could also reduce somewhat the lower energy dipole.



rate research

Read More

153 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic particles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
We consider the recent results on UHECR (Ultra High Energy Cosmic Ray) composition and their distribution in the sky from ten EeV energy (the dipole anisotropy) up to the highest UHECR energies and their clustering maps: UHECR have been found mostly made by light and lightest nuclei. We summarized the arguments that favor a few localized nearby extragalactic sources for most UHECR as CenA, NG 253, M82. We comment also on the possible partial role of a few remarkable galactic UHECR sources. Finally we revive the eventual role of a relic neutrino eV mass in dark hot halo (hit by ZeV neutrinos) to explain the new UHECR clustering events centered around a very far cosmic AGN sources as 3C 454.
142 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discovery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
We present an update on CRDB (https://lpsc.in2p3.fr/crdb), the cosmic-ray database for charged species. CRDB is based on MySQL, queried and sorted by jquery and table-sorter libraries, and displayed via PHP web pages through the AJAX protocol. We review the modifications made on the structure and outputs of the database since the first release (Maurin et al., 2014). For this update, the most important feature is the inclusion of ultra-heavy nuclei ($Z>30$), ultra-high energy nuclei (from $10^{15}$ to $10^{20}$ eV), and limits on antinuclei fluxes ($Zleq -1$ for $A>1$); more than 100 experiments, 350 publications, and 40000 data points are now available in CRDB. We also revisited and simplified how users can retrieve data and submit new ones. For questions and requests, please contact [email protected].
155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا