The main of this work is to use the unit lower triangular matrices for solving inverse eigenvalue problem of nonnegative matrices and present the easier method to solve this problem.
We prove that any symplectic matrix can be factored into no more than 5 unit triangular symplectic matrices, moreover, 5 is the optimal number. This result improves the existing triangular factorization of symplectic matrices which gives proof of 9 blocks. We also show the corresponding improved conclusions for structured subsets of symplectic matrices.
We analyze the macroscale behavior of random lower (and therefore upper) triangular matrices with entries drawn iid from a distribution with nonzero mean and finite variance. We show that such a matrix behaves like a probabilistic version of a Riemann sum and therefore in the limit behaves like the Volterra operator. Specifically, we analyze certain SOT-like and WOT-like modes of convergence for random lower triangular matrices to a scaled Volterra operator. We close with a brief discussion of moments.
The aim of this manuscript is to understand the dynamics of products of nonnegative matrices. We extend a well known consequence of the Perron-Frobenius theorem on the periodic points of a nonnegative matrix to products of finitely many nonnegative matrices associated to a word and later to products of nonnegative matrices associated to a word, possibly of infinite length. We also make use of an appropriate definition of the exponential map and the logarithm map on the positive orthant of $mathbb{R}^{n}$ and explore the relationship between the periodic points of certain subhomogeneous maps defined through the above functions and the periodic points of matrix products, mentioned above.
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
Tubal scalars are usual vectors, and tubal matrices are matrices with every element being a tubal scalar. Such a matrix is often recognized as a third-order tensor. The product between tubal scalars, tubal vectors, and tubal matrices can be done by the powerful t-product. In this paper, we define nonnegative/positive/strongly positive tubal scalars/vectors/matrices, and establish several properties that are analogous to their matrix counterparts. In particular, we introduce the irreducible tubal matrix, and provide two equivalent characterizations. Then, the celebrated Perron-Frobenius theorem is established on the nonnegative irreducible tubal matrices. We show that some conclusions of the PF theorem for nonnegative irreducible matrices can be generalized to the tubal matrix setting, while some are not. One reason is the defined positivity here has a different meaning to its usual sense. For those conclusions that can not be extended, weaker conclusions are proved. We also show that, if the nonnegative irreducible tubal matrix contains a strongly positive tubal scalar, then most conclusions of the matrix PF theorem hold.