Do you want to publish a course? Click here

Macroscale behavior of random lower triangular matrices

89   0   0.0 ( 0 )
 Added by J E Pascoe
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the macroscale behavior of random lower (and therefore upper) triangular matrices with entries drawn iid from a distribution with nonzero mean and finite variance. We show that such a matrix behaves like a probabilistic version of a Riemann sum and therefore in the limit behaves like the Volterra operator. Specifically, we analyze certain SOT-like and WOT-like modes of convergence for random lower triangular matrices to a scaled Volterra operator. We close with a brief discussion of moments.



rate research

Read More

The main of this work is to use the unit lower triangular matrices for solving inverse eigenvalue problem of nonnegative matrices and present the easier method to solve this problem.
179 - Paul Bourgade 2018
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
Let $M_n$ be a random $ntimes n$ matrix with i.i.d. $text{Bernoulli}(1/2)$ entries. We show that for fixed $kge 1$, [lim_{nto infty}frac{1}{n}log_2mathbb{P}[text{corank }M_nge k] = -k.]
118 - Elizabeth Meckes 2021
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
Let $xi$ be a non-constant real-valued random variable with finite support, and let $M_{n}(xi)$ denote an $ntimes n$ random matrix with entries that are independent copies of $xi$. For $xi$ which is not uniform on its support, we show that begin{align*} mathbb{P}[M_{n}(xi)text{ is singular}] &= mathbb{P}[text{zero row or column}] + (1+o_n(1))mathbb{P}[text{two equal (up to sign) rows or columns}], end{align*} thereby confirming a folklore conjecture. As special cases, we obtain: (1) For $xi = text{Bernoulli}(p)$ with fixed $p in (0,1/2)$, [mathbb{P}[M_{n}(xi)text{ is singular}] = 2n(1-p)^{n} + (1+o_n(1))n(n-1)(p^2 + (1-p)^2)^{n},] which determines the singularity probability to two asymptotic terms. Previously, no result of such precision was available in the study of the singularity of random matrices. (2) For $xi = text{Bernoulli}(p)$ with fixed $p in (1/2,1)$, [mathbb{P}[M_{n}(xi)text{ is singular}] = (1+o_n(1))n(n-1)(p^2 + (1-p)^2)^{n}.] Previously, only the much weaker upper bound of $(sqrt{p} + o_n(1))^{n}$ was known due to the work of Bourgain-Vu-Wood. For $xi$ which is uniform on its support: (1) We show that begin{align*} mathbb{P}[M_{n}(xi)text{ is singular}] &= (1+o_n(1))^{n}mathbb{P}[text{two rows or columns are equal}]. end{align*} (2) Perhaps more importantly, we provide a sharp analysis of the contribution of the `compressible part of the unit sphere to the lower tail of the smallest singular value of $M_{n}(xi)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا