No Arabic abstract
Navigation, bio-tracking devices and gravity gradiometry are amongst the diverse range of applications requiring ultrasensitive measurements of acceleration. We describe an accelerometer that exploits the dispersive and dissipative coupling of the motion of an optical whispering gallery mode (WGM) resonator to a waveguide. A silica microsphere-cantilever is used as both the optical cavity and inertial test-mass. Deflections of the cantilever in response to acceleration alter the evanescent coupling between the microsphere and the waveguide, in turn causing a measurable frequency shift and broadening of the WGM resonance. The theory of this optomechanical response is outlined. By extracting the dispersive and dissipative optomechanical rates from data we find good agreement between our model and sensor response. A noise density of 4.5 $mu$g Hz$^{-1/2}$ with a bias instability of 31.8 $mu$g (g=9.81 ms$^{-2}$) is measured, limited by classical noise larger than the test-mass thermal motion. Closed-loop feedback is demonstrated to reduce the bias instability and long term drift. Currently this sensor outperforms both commercial accelerometers used for navigation and those in ballistocardiology for monitoring blood flowing into the heart. Further optimization would enable short-range gravitational force detection with operation beyond the lab for terrestrial or space gradiometry.
Internet of Things (IoT) employs a large number of spatially distributed wireless sen-sors to monitor physical environments, e.g., temperature, humidity, and air pressure, have found wide applications including environmental monitoring, health care monitoring, smart cities and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment. To date, wireless sensors used in IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments. Furthermore, by introducing optical resonance to enhanced light-matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity and versatile functionalities, which can signifi-cantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on whispering-gallery-mode (WGM) optical resonators. The sensor node is controlled via a customized iOS app. Its per-formance was studied in two practical scenarios: (1) real-time measurement of air tempera-ture over 12 hours and (2) aerial mapping of temperature distribution by a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for large-scale deployments of WGM sensors in IoT.
Ultrahigh repetition rate lasers will become vital light sources for many future technologies; however, their realization is challenging because the cavity size must be minimized. Whispering-gallery-mode (WGM) microresonators are attractive for this purpose since they allow the strong light-matter interaction usually needed to enable mode-locking. However, the optimum parameter ranges are entirely unknown since no experiments have yet been conducted. Here, we numerically investigate pulsed operation in a toroidal WGM microresonator with gain and saturable absorption (SA) to study the experimental feasibility. We show that dispersion is the key parameter for achieving passive mode-locking in this system. Moreover, the design guideline provided in this work can apply to any small resonators with gain and SA and is not limited to a specific cavity system.
Squeezed vacuum states enable optical measurements below the quantum limit and hence are a valuable resource for applications in quantum metrology and also quantum communication. However, most available sources require high pump powers in the milliwatt range and large setups, which hinders real world applications. Furthermore, degenerate operation of such systems presents a challenge. Here, we use a compact crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator. We demonstrate about 1.4 dB noise reduction below the shot noise level for only 300 $mutext{W}$ of pump power in degenerate single mode operation. Furthermore, we report a record pump threshold as low as 1.35 $mutext{W}$. Our results show that the whispering gallery based approach presents a promising platform for a compact and efficient source for nonclassical light.
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whispering-gallery mode resonators store 98% of their energy in vacuum. We have measured internal quality factors above 3 million at the single photon level and have used the device as a materials characterization platform to place an upper bound on the surface resistance of thin film aluminum of less than 250nOhms.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An unprecedented study of both the amplitude and phase of THz WGMs is presented. The coherent THz frequency domain measurements are in excellent agreement with a simple analytical model and results from numerical simulations. A high finesse of 9 and a quality (Q) factor exceeding 440 at 0.47 THz are observed. Due to the large evanescent field the high Q-factor THz WGM bubble resonators can be used as a compact, highly sensitive sensor in the intriguing THz frequency range.