No Arabic abstract
Squeezed vacuum states enable optical measurements below the quantum limit and hence are a valuable resource for applications in quantum metrology and also quantum communication. However, most available sources require high pump powers in the milliwatt range and large setups, which hinders real world applications. Furthermore, degenerate operation of such systems presents a challenge. Here, we use a compact crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator. We demonstrate about 1.4 dB noise reduction below the shot noise level for only 300 $mutext{W}$ of pump power in degenerate single mode operation. Furthermore, we report a record pump threshold as low as 1.35 $mutext{W}$. Our results show that the whispering gallery based approach presents a promising platform for a compact and efficient source for nonclassical light.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An unprecedented study of both the amplitude and phase of THz WGMs is presented. The coherent THz frequency domain measurements are in excellent agreement with a simple analytical model and results from numerical simulations. A high finesse of 9 and a quality (Q) factor exceeding 440 at 0.47 THz are observed. Due to the large evanescent field the high Q-factor THz WGM bubble resonators can be used as a compact, highly sensitive sensor in the intriguing THz frequency range.
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. Using the self-heterodyne beat technique the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10^3 with respect to the passive cavity linewidth. The three-cornered hat method shows a stability of 10^(-11) after 10 mu s.
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.
We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the experimental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed.
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.