Do you want to publish a course? Click here

Martin boundaries of representations of the Cuntz algebra

123   0   0.0 ( 0 )
 Added by Feng Tian
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a number of recent papers, the idea of generalized boundaries has found use in fractal and in multiresolution analysis; many of the papers having a focus on specific examples. Parallel with this new insight, and motivated by quantum probability, there has also been much research which seeks to study fractal and multiresolution structures with the use of certain systems of non-commutative operators; non-commutative harmonic/stochastic analysis. This in turn entails combinatorial, graph operations, and branching laws. The most versatile, of these non-commutative algebras are the Cuntz algebras; denoted $mathcal{O}_{N}$, $N$ for the number of isometry generators. $N$ is at least 2. Our focus is on the representations of $mathcal{O}_{N}$. We aim to develop new non-commutative tools, involving both representation theory and stochastic processes. They serve to connect these parallel developments. In outline, boundaries, Poisson, or Martin, are certain measure spaces (often associated to random walk models), designed to encode the asymptotic behavior, e.g., how trajectories diverge when the number of steps goes to infinity. We stress that our present boundaries (commutative or non-commutative) are purely measure-theoretical objects. Although, as we show, in some cases our boundaries may be compared with more familiar topological boundaries.



rate research

Read More

We continue our investigation, from cite{dh}, of the ring-theoretic infiniteness properties of ultrapowers of Banach algebras, studying in this paper the notion of being purely infinite. It is well known that a $C^*$-algebra is purely infinite if and only if any of its ultrapower is. We find examples of Banach algebras, as algebras of operators on Banach spaces, which do have purely infinite ultrapowers. Our main contribution is the construction of a Cuntz-like Banach $*$-algebra which is purely infinite, but does not have purely infinite ultrapowers. Our proof of being purely infinite is combinatorial, but direct, and so differs from the proof for the Cuntz algebra. We use an indirect method (and not directly computing norm estimates) to show that this algebra does not have purely infinite ultrapowers.
This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over usually an uncountable alphabet. It is shown that at most the second order representation is enough for a continuous map. In particular, it is shown that the dynamics of one-dimensional continuous maps to a great extent can be transformed to the study of subshift structure of a general symbolic dynamics system. By introducing distillations, partial representations of some general continuous maps are obtained. Finally, partitions and representations of a class of discontinuous maps, piecewise continuous maps are discussed, and as examples, a representation of the Gauss map via a full shift over a countable alphabet and representations of interval exchange transformations as subshifts of infinite type are given.
We determine the multiplicity of the irreducible representation V(n) of the simple Lie algebra sl(2,C) as a direct summand of its fourth exterior power $Lambda^4 V(n)$. The multiplicity is 1 (resp. 2) if and only if n = 4, 6 (resp. n = 8, 10). For these n we determine the multilinear polynomial identities of degree $le 7$ satisfied by the sl(2,C)-invariant alternating quaternary algebra structures obtained from the projections $Lambda^4 V(n) to V(n)$. We represent the polynomial identities as the nullspace of a large integer matrix and use computational linear algebra to find the canonical basis of the nullspace.
Let $J$ and $R$ be anti-commuting fundamental symmetries in a Hilbert space $mathfrak{H}$. The operators $J$ and $R$ can be interpreted as basis (generating) elements of the complex Clifford algebra ${mathcal C}l_2(J,R):={span}{I, J, R, iJR}$. An arbitrary non-trivial fundamental symmetry from ${mathcal C}l_2(J,R)$ is determined by the formula $J_{vec{alpha}}=alpha_{1}J+alpha_{2}R+alpha_{3}iJR$, where ${vec{alpha}}inmathbb{S}^2$. Let $S$ be a symmetric operator that commutes with ${mathcal C}l_2(J,R)$. The purpose of this paper is to study the sets $Sigma_{{J_{vec{alpha}}}}$ ($forall{vec{alpha}}inmathbb{S}^2$) of self-adjoint extensions of $S$ in Krein spaces generated by fundamental symmetries ${{J_{vec{alpha}}}}$ (${{J_{vec{alpha}}}}$-self-adjoint extensions). We show that the sets $Sigma_{{J_{vec{alpha}}}}$ and $Sigma_{{J_{vec{beta}}}}$ are unitarily equivalent for different ${vec{alpha}}, {vec{beta}}inmathbb{S}^2$ and describe in detail the structure of operators $AinSigma_{{J_{vec{alpha}}}}$ with empty resolvent set.
295 - Adam Dor-On , Guy Salomon 2017
We apply Arvesons non-commutative boundary theory to dilate every Toeplitz-Cuntz-Krieger family of a directed graph $G$ to a full Cuntz-Krieger family for $G$. We do this by describing all representations of the Toeplitz algebra $mathcal{T}(G)$ that have unique extension when restricted to the tensor algebra $mathcal{T}_+(G)$. This yields an alternative proof to a result of Katsoulis and Kribs that the $C^*$-envelope of $mathcal T_+(G)$ is the Cuntz-Krieger algebra $mathcal O(G)$. We then generalize our dilation results further, to the context of colored directed graphs, by investigating free products of operator algebras. These generalizations rely on results of independent interest on complete injectivity and a characterization of representations with the unique extension property for free products of operator algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا