Do you want to publish a course? Click here

Alternating quaternary algebra structures on irreducible representations of sl(2,C)

218   0   0.0 ( 0 )
 Added by Murray Bremner
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine the multiplicity of the irreducible representation V(n) of the simple Lie algebra sl(2,C) as a direct summand of its fourth exterior power $Lambda^4 V(n)$. The multiplicity is 1 (resp. 2) if and only if n = 4, 6 (resp. n = 8, 10). For these n we determine the multilinear polynomial identities of degree $le 7$ satisfied by the sl(2,C)-invariant alternating quaternary algebra structures obtained from the projections $Lambda^4 V(n) to V(n)$. We represent the polynomial identities as the nullspace of a large integer matrix and use computational linear algebra to find the canonical basis of the nullspace.



rate research

Read More

290 - Tosiaki Kori 2017
We introduce three non-trivial 2-cocycles $c_k$, k=0,1,2, on the Lie algebra $S^3H=Map(S^3,H)$ with the aid of the corresponding basis vector fields on $S^3$, and extend them to 2-cocycles on the Lie algebra $S^3gl(n,H)=S^3H otimes gl(n,C)$. Then we have the corresponding central extension $S^3gl(n,H)oplus oplus_k (Ca_k)$. As a subalgebra of $S^3H$ we have the algebra $C[phi]$ of the Laurent polynomial spinors on $S^3$. Then we have a Lie subalgebra $hat{gl}(n, H)=C[phi] otimes gl(n, C)$ of $S^3gl(n,H)$, as well as its central extension by the 2-cocycles ${c_k}$ and the Euler vector field $d$: $hat{gl}=hat{gl}(n, H) oplus oplus_k(Ca_k)oplus Cd$ . The Lie algebra $hat{sl}(n,H)$ is defined as a Lie subalgebra of $hat{gl}(n,H)$ generated by $C[phi]otimes sl(n,C))$. We have the corresponding central extension of $hat{sl}(n,H)$ by the 2-cocycles ${c_k}$ and the derivation $d$, which becomes a Lie subalgebra $hat{sl}$ of $hat{gl}$. Let $h_0$ be a Cartan subalgebra of $sl(n,C)$ and $hat{h}=h_0 oplus oplus_k(Ca_k)oplus Cd$. The root space decomposition of the $ad(hat{h})$-representation of $hat{sl}$ is obtained. The set of roots is $Delta ={ m/2 delta + alpha ; alpha in Delta_0, m in Z} bigcup {m/2 delta ; m in Z }$ . And the root spaces are $hat{g}_{m/2 delta+ alpha}= C[phi ;m] otimes g_{alpha}$, for $alpha eq 0$ , $hat{g}_{m/2 delta}= C[phi ;m] otimes h_0$, for $m eq 0$, and $hat{g}_{0 delta}= hat{h}$, where $C[phi ;m]$ is the subspace with the homogeneous degree m. The Chevalley generators of $hat{sl}$ are given.
A demonstration of how the point symmetries of the Chazy Equation become nonlocal symmetries for the reduced equation is discussed. Moreover we construct an equivalent third-order differential equation which is related to the Chazy Equation under a generalized transformation, and find the point symmetries of the Chazy Equation are generalized symmetries for the new equation. With the use of singularity analysis and a simple coordinate transformation we construct a solution for the Chazy Equation which is given by a Right Painleve Series. The singularity analysis is applied to the new third-order equation and we find that it admits two solutions, one given by a Left Painleve Series and one given by a Right Painleve Series where the leading-order behaviors and the resonances are explicitly those of the Chazy Equation.
We determine the Clebsch-Gordan and Racah-Wigner coefficients for continuous series of representations of the quantum deformed algebras U_q(sl(2)) and U_q(osp(1|2)). While our results for the former algebra reproduce formulas by Ponsot and Teschner, the expressions for the orthosymplectic algebra are new. Up to some normalization factors, the associated Racah-Wigner coefficients are shown to agree with the fusing matrix in the Neveu-Schwarz sector of N=1 supersymmetric Liouville field theory.
This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras $S$, one for each $q in mathbb{C}^times$, having a degree-two central element $c$ such that $S[c^{-1}]_0 cong U_q(mathfrak{sl}_2)$. The non-commutative analogues of $mathbb{P}^3$ are the spaces $operatorname{Proj}_{nc}(S)$. We show how the points, fat points, lines, and quadrics, in $operatorname{Proj}_{nc}(S)$, and their incidence relations, correspond to finite dimensional irreducible representations of $U_q(mathfrak{sl}_2)$, Verma modules, annihilators of Verma modules, and homomorphisms between them.
98 - Romain Dujardin 2018
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on P 1 (C).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا