No Arabic abstract
According to the third law of Thermodynamics, it takes an infinite number of steps for any object, including black-holes, to reach zero temperature. For any physical system, the process of cooling to absolute zero corresponds to erasing information or generating pure states. In contrast with the ordinary matter, the black-hole temperature can be lowered only by adding matter-energy into it. However, it is impossible to remove the statistical fluctuations of the infalling matter-energy. The fluctuations lead to the fact the black-holes have a finite lower temperature and, hence, an upper bound on the horizon radius. We make an estimate of the upper bound for the horizon radius which is curiosly comparable to Hubble horizon. We compare this bound with known results and discuss its implications.
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the existing quasinormal frequencies will remain unchanged. However, the confirmation of such an intuition is not trivial for the rotating black hole, since the eigenvalues in the radial and angular parts of the master equations are coupled. We show that for the rotating black holes, a moderate source term in the master equation in the Laplace s-domain does not modify the quasinormal modes. Furthermore, we generalize our discussions to the case where the external source serves as a driving force. Different from an initial pulse, an external source may further drive the system to experience new perturbation modes. To be specific, novel dissipative singularities might be brought into existence and enrich the pole structure. This is a physically relevant scenario, due to its possible implication in modified gravity. Our arguments are based on exploring the pole structure of the solution in the Laplace s-domain with the presence of the external source. The analytical analyses are verified numerically by solving the inhomogeneous differential equation and extracting the dominant complex frequencies by employing the Prony method.
It is known that the Meissner-like effect is seen in a magnetosphere without an electric current in black hole spacetime: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this paper, in order to see how an electric current affects the Meissner-like effect, we study a force-free electromagnetic system in a static and spherically symmetric extreme black hole spacetime. By assuming that the rotational angular velocity of the magnetic field is very small, we construct a perturbative solution for the Grad-Shafranov equation, which is the basic equation to determine a stationary, axisymmetric electromagnetic field with a force-free electric current. Our perturbation analysis reveals that, if an electric current exists, higher multipole components may be superposed upon the monopole component on the event horizon, even if the black hole is extreme.
We present a critical assessment of the SN1987A supernova cooling bound on axions and other light particles. Core-collapse simulations used in the literature to substantiate the bound omitted from the calculation the envelope exterior to the proto-neutron star (PNS). As a result, the only source of neutrinos in these simulations was, by construction, a cooling PNS. We show that if the canonical delayed neutrino mechanism failed to explode SN1987A, and if the pre-collapse star was rotating, then an accretion disk would form that could explain the late-time ($tgtrsim5$ sec) neutrino events. Such accretion disk would be a natural feature if SN1987A was a collapse-induced thermonuclear explosion. Axions do not cool the disk and do not affect its neutrino output, provided the disk is optically-thin to neutrinos, as it naturally is. These considerations cast doubt on the supernova cooling bound.
We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Teukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.
We formulate and solve the problem of spherically symmetric, steady state, adiabatic accretion onto a Schwarzschild-like black hole obtained recently. We derive the general analytic expressions for the critical points, the critical velocity, the critical speed of sound, and subsequently the mass accretion rate. The case for polytropic gas is discussed in detail. We find the parameter characterizing the breaking of Lorentz symmetry will slow down the mass accretion rate, while has no effect on the gas compression and the temperature profile below the critical radius and at the event horizon.