Do you want to publish a course? Click here

Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole

329   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Teukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.



rate research

Read More

We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergosphere region of such BH and bring out the effect of tidal charge parameter on ergosphere. It is found that the ISCO of rotating braneworld BH is very sensitive to braneworld BH parameter C (also known as tidal charge parameter) in addition to its rotation parameter. We further discovered that the orbital radius of the spinning test particles changes non monotonously with the braneworld BH tidal charge parameter. It is found that for rotating braneworld BH the allowed range of the particle spin grows as the tidal charge parameter C decreases, in contrast with the Kerr Newman BH. We also found the similar behavior of the particles spin for the braneworld Reissner Nordstrom (C < 0) BH in contrast with its counterpart having (C > 0).
We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find four critical values as the boundaries. When the separation is relatively large, the sequence on the symmetric plane bifurcates, and furthermore, they extend to each innermost stable circular orbit in the vicinity of each black hole. In a certain separation range, the sequence on the symmetric plane separates into two parts. On the basis of this phenomenon, we discuss the formation of double accretion disks with a common center. Finally, we clarify the dependence of the radii of marginally stable circular orbits and innermost stable circular orbits on the separation parameter. We find a discontinuous transition of the innermost stable circular orbit radius. We also find the separation range at which the radius of the innermost stable circular orbit can be smaller than that of the stable circular photon orbit.
We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the dimensionless Kerr parameter $a$ is at the Thorne limit $a=0.998$, the escape probability from the ISCO is $58.8%$. In the extremal case $a=1$, even if the orbital radius of the light source is arbitrarily close to the ISCO radius, which coincides with the horizon radius, the escape probability remains at $54.6%$. We also show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black hole will be detectable on the edge of its shadow.
The innermost stable circular orbits (ISCOs) around rapidly rotating neutron stars are studied in dilatonic Einstein-Gauss-Bonnet theory. Universal relations for properly scaled ISCO properties are extended from General Relativity to dilatonic Einstein-Gauss-Bonnet theory and additional relations are obtained.
We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. It turns out that the metric components are separable from the constants of motion along geodesics. We show also that a metric component $g_{rr}$ with a radial coordinate $r$ does not affect MSCOs. This suggests that, as a test of gravity, any ISCO measurement may be put into the same category as gravitational redshift experiments. MSCOs for exact solutions to the Einsteins equation are also mentioned.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا