No Arabic abstract
The KESPRINT consortium identified K2-216 as a planetary candidate host star in the K2 space mission Campaign 8 field with a transiting super-Earth. The planet has recently been validated as well. Our aim was to confirm the detection and derive the main physical characteristics of K2-216b, including the mass. We performed a series of follow-up observations: high resolution imaging with the FastCam camera at the TCS, the Infrared Camera and Spectrograph at Subaru, and high resolution spectroscopy with HARPS (ESO, La Silla), HARPS-N (TNG), and FIES (NOT). The stellar spectra were analyzed with the SpecMatch-Emp and SME codes to derive the stellar fundamental properties. We analyzed the K2 light curve with the Pyaneti software. The radial-velocity measurements were modelled with both a Gaussian process (GP) regression and the floating chunk offset (FCO) technique to simultaneously model the planetary signal and correlated noise associated with stellar activity. Imaging confirms that K2-216 is a single star. Our analysis discloses that the star is a moderately active K5V star of mass 0.70+/-0.03 Msun and radius 0.72+/-0.03 Rsun. Planet b is found to have a radius of 1.75+0.17-0.10 Rearth and a 2.17-day orbit in agreement with previous results. We find consistent results for the planet mass from both models: 7.4+/-2.2 Mearth from the GP regression, and 8.0+/-1.6 Mearth from the FCO technique, which implies that this planet is a super-Earth. The planet parameters put planet b in the middle of, or just below, the gap of the radius distribution of small planets. The density is consistent with a rocky composition of primarily iron and magnesium silicate. In agreement with theoretical predictions, we find that the planet is a remnant core, stripped of its atmosphere, and is one of the largest planets found that has lost its atmosphere.
K2-291 (EPIC 247418783) is a solar-type star with a radius of R_star = 0.899 $pm$ 0.034 R_sun and mass of M_star=0.934 $pm$ 0.038 M_sun. From K2 C13 data, we found one super-Earth planet (R_p = 1.589+0.095-0.072 R_Earth) transiting this star on a short period orbit (P = 2.225177 +6.6e-5 -6.8e-5 days). We followed this system up with adaptive-optic imaging and spectroscopy to derive stellar parameters, search for stellar companions, and determine a planet mass. From our 75 radial velocity measurements using HIRES on Keck I and HARPS-N on Telescopio Nazionale Galileo, we constrained the mass of EPIC 247418783b to M_p = 6.49 $pm$ 1.16 M_Earth. We found it necessary to model correlated stellar activity radial velocity signals with a Gaussian process in order to more accurately model the effect of stellar noise on our data; the addition of the Gaussian process also improved the precision of this mass measurement. With a bulk density of 8.84+2.50-2.03 g cm-3, the planet is consistent with an Earth-like rock/iron composition and no substantial gaseous envelope. Such an envelope, if it existed in the past, was likely eroded away by photo-evaporation during the first billion years of the stars lifetime.
The interaction between Earth-like exoplanets and the magnetic field of low-mass host stars are considered to produce weak emission signals at radio frequencies. A study using LOFAR data announced the detection of radio emission from the mid M-type dwarf GJ 1151 that could potentially arise from a close-in terrestrial planet. Recently, the presence of a 2.5-Me planet orbiting GJ 1151 with a 2-day period has been claimed using 69 radial velocities (RVs) from the HARPS-N and HPF instruments. We have obtained 70 new high-precision RV measurements in the framework of the CARMENES M-dwarf survey and use these data to confirm the presence of the claimed planet and to place limits on possible planetary companions in the GJ 1151 system. We analyse the periodicities present in the combined RV data sets from all three instruments and calculate the detection limits for potential planets in short-period orbits. We cannot confirm the recently-announced candidate planet and conclude that the 2-day signal in the HARPS-N and HPF data sets is most probably produced by a long-term RV variability possibly arising from an outer planetary companion yet unconstrained. We calculate a 99.9% significance detection limit of 1.50 ms-1 in the RV semi-amplitude, which places upper limits of 0.7 Me and 1.2 Me to the minimum masses of any potential exoplanets with orbital periods of 1 and 5 days, respectively.
HD3167 is a bright (V=8.9 mag) K0V star observed by the NASAs K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT,
[email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.
M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast. The HADES and CARMENES programs aim to carry out extensive searches of exoplanetary systems around this type of stars in the northern hemisphere, allowing us to address statistically the properties of the planets orbiting these objects. In this work, we perform a spectroscopic and photometric study of one of the program stars (GJ 740), which exhibits a short-period RV signal compatible with a planetary companion. We carried out a spectroscopic analysis based on 129 HARPS-N spectra taken over a time-span of 6 yr combined with 57 HARPS spectra taken over 4 yr, as well as 32 CARMENES spectra taken during more than 1 yr, resulting in a dataset with a time coverage of 10 yr. We also relied on 459 measurements from the public ASAS survey with a time-coverage of 8 yr along with 5 yr of photometric magnitudes from the EXORAP project taken in the $V$, $B$, $R$, and $I$ filters to carry out a photometric study. Both analyses were made using Markov Chain Monte Carlo (MCMC) simulations and Gaussian Process regression to model the activity of the star. We present the discovery of a short-period super-Earth with an orbital period of 2.37756$^{+0.00013}_{-0.00011}$ d and a minimum mass of 2.96$^{+0.50}_{-0.48}$ M$_{oplus}$. We offer an update to the previously reported characterization of the magnetic cycle and rotation period of the star, obtaining values of $P_{rm rot}$=35.563$pm$0.071 d and $P_{rm cycle}$=2800$pm$150 d. Furthermore, the RV time-series exhibits a possibly periodic long-term signal which might be related to a Saturn-mass planet of $sim$ 100 M$_{oplus}$.
We report the discovery of the 1.008-day, ultra-short period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright ($V=7.9$) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS and CORALIE radial-velocities, we measure a precise mass of $8.8pm0.6$ $M_oplus$ for this $1.74 pm 0.05$ $R_oplus$ exoplanet, which provides enough information to constrain its bulk composition, which is similar to Earths but enriched in iron. The radius, mass and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial-velocities reveal an additional $4.78$-day signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c (TOI-141c), whose minimum mass of $19.95pm 1.4$ $M_oplus$ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an ultra-short period transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.