Do you want to publish a course? Click here

HD 213885b: A transiting 1-day-period super-Earth with an Earth-like composition around a bright ($V=7.9$) star unveiled by TESS

70   0   0.0 ( 0 )
 Added by N\\'estor Espinoza
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of the 1.008-day, ultra-short period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright ($V=7.9$) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS and CORALIE radial-velocities, we measure a precise mass of $8.8pm0.6$ $M_oplus$ for this $1.74 pm 0.05$ $R_oplus$ exoplanet, which provides enough information to constrain its bulk composition, which is similar to Earths but enriched in iron. The radius, mass and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial-velocities reveal an additional $4.78$-day signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c (TOI-141c), whose minimum mass of $19.95pm 1.4$ $M_oplus$ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an ultra-short period transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.



rate research

Read More

We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD~108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance and precise Doppler spectroscopy as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD~108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly-rocky super-Earth with a period of $3.79523_{-0.00044}^{+0.00047}$ days and has a radius of $1.586pm0.098$ $R_oplus$. The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of $2.068_{-0.091}^{+0.10}$ $R_oplus$, $2.72pm0.11$ $R_oplus$, and $3.12_{-0.12}^{+0.13}$ $R_oplus$ and periods of $6.20370_{-0.00052}^{+0.00064}$ days, $14.17555_{-0.0011}^{+0.00099}$ days, and $19.5917_{-0.0020}^{+0.0022}$ days, respectively. With V and K$_{rm s}$ magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD~108236 is the brightest Sun-like star in the visual (V) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures, and share a common history of insolation from a Sun-like star ($R_star = 0.888 pm 0.017$ R$_odot$, $T_{rm eff} = 5730 pm 50$ K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution.
We have detected transits of the innermost planet e orbiting 55 Cnc (V=6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the stars mass and radius to be 0.963_{-0.029}^{+0.051} M_sun and 0.943 +/- 0.010 R_sun, the planets mass, radius, and mean density are 8.63 +/- 0.35 Mearth, 2.00 +/- 0.14 Rearth, and 5.9_{-1.1}^{+1.5} g/cm^3. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 +/- 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.
We report the detection of a transiting, dense Neptune planet candidate orbiting the bright ($V=8.6$) K0.5V star HD 95338. Detection of the 55-day periodic signal comes from the analysis of precision radial velocities from the Planet Finder Spectrograph on the Magellan II Telescope. Follow-up observations with HARPS also confirm the presence of the periodic signal in the combined data. HD 95338 was also observed by the Transiting Exoplanet Survey Satellite ({it TESS}) where we identify a clear single transit in the photometry. A Markov Chain Monte Carlo period search on the velocities allows strong constraints on the expected transit time, matching well the epoch calculated from tess{} data, confirming both signals describe the same companion. A joint fit model yields an absolute mass of 42.44$^{+2.22}_{-2.08} M_{oplus}$ and a radius of 3.89$^{+0.19}_{-0.20}$ $R_{oplus}$ which translates to a density of 3.98$^{+0.62}_{-0.64}$ gcm, for the planet. Given the planet mass and radius, structure models suggest it is composed of a mixture of ammonia, water, and methane. HD 95338,b is one of the most dense Neptune planets yet detected, indicating a heavy element enrichment of $sim$90% ($sim38, M_{oplus}$). This system presents a unique opportunity for future follow-up observations that can further constrain structure models of cool gas giant planets.
The star EPIC 210894022 has been identified from a light curve acquired through the K2 space mission as possibly orbited by a transiting planet. Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. We combine the K2 photometry with reconnaissance spectroscopy and radial velocity (RV) measurements obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of EPIC 210894022 strongly suggest it to be a member of the thick disk population. We find that the star is a metal poor ([Fe/H]=-0.53+/-0.05 dex) and alpha-rich somewhat evolved solar-like object of spectral type G3 with Teff=5730+/-50 K, logg=4.15+/-0.1 (cgs), radius of 1.3+/-0.1 R_Sun, and mass of 0.88+/-0.02 M_Sun. The RV detection together with the imaging confirms with a high level of significance that the transit signature is caused by a super-Earth orbiting the star EPIC 210894022. We measure a mass of 8.6+/-3.9 M_Earth and a radius of 1.9+/-0.2 R_Earth. A second more massive object with a period longer than about 120 days is indicated by a long term linear acceleration. With an age of > 10 Gyrs this system is one of the oldest where planets is hitherto detected. Further studies of this planetary system is important since it contains information about the planetary formation process during a very early epoch of the history of our Galaxy.
The Earth, Venus, Mars, and some extrasolar terrestrial planets have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle. At the inner frontier of the solar system, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact, mantle evaporation, or the depletion of silicate at the inner-edge of the proto-planetary disk. These scenarios are still strongly debated. Here we report the discovery of a multiple transiting planetary system (K2-229), in which the inner planet has a radius of 1.165+/-0.066 Rearth and a mass of 2.59+/-0.43 Mearth. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, while it was expected to be similar to that of the Earth based on host-star chemistry. This larger Mercury analogue either formed with a very peculiar composition or it has evolved since, e.g. by losing part of its mantle. Further characterisation of Mercury-like exoplanets like K2-229 b will help putting the detailed in-situ observations of Mercury (with Messenger and BepiColombo) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا