No Arabic abstract
We present VRI spectrophotometry of 1003 Main-Belt Asteroids (MBAs) observed with the Sutherland, South Africa, node of the Korea Microlensing Telescope Network (KMTNet). All of the observed MBAs were serendipitously captured in KMTNets large 2deg $times$ 2deg field of view during a separate targeted near-Earth Asteroid study (Erasmus et al. 2017). Our broadband spectrophotometry is reliable enough to distinguish among four asteroid taxonomies and we confidently categorize 836 of the 1003 observed targets as either a S-, C-, X-, or D-type asteroid by means of a Machine Learning (ML) algorithm approach. Our data show that the ratio between S-type MBAs and (C+X+D)-type MBAs, with H magnitudes between 12 and 18 (12 km $gtrsim$ diameter $gtrsim$ 0.75 km), is almost exactly 1:1. Additionally, we report 0.5- to 3-hour (median: 1.3-hour) light-curve data for each MBA and we resolve the complete rotation periods and amplitudes for 59 targets. Two out of the 59 targets have rotation periods potentially below the theoretical zero cohesion boundary limit of 2.2 hours. We report lower limits for the rotation periods and amplitudes for the remaining targets. Using the resolved and unresolved light curves we determine the shape distribution for this population using a Monte Carlo simulation. Our model suggests a population with an average elongation $b/a = 0.74pm0.07$ and also shows that this is independent of asteroid size and taxonomy.
The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-OKeefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of approximately 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 pm 0.13 : 0.71 pm 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.
We present new photometric observations for twelve asteroids ((122) Gerda, (152) Atala, (260) Huberta, (665) Sabine, (692) Hippodamia, (723) Hammonia, (745) Mauritia, (768) Struveana, (863) Benkoela, (1113) Katja, (1175) Margo, (2057) Rosemary) from the outer part of the main belt aimed to obtain the magnitude-phase curves and to verify geometric albedo and taxonomic class based on their magnitude-phase behaviors. The measured magnitude-phase relations confirm previously determined composition types of (260) Huberta (C-type), (692) Hippodamia (S-type) and (1175) Margo (S-type). Asteroids (665) Sabine and (768) Struveana previously classified as X-type show phase-curve behavior typical for moderate-albedo asteroids and may belong to the M-type. The phase-curve of (723) Hammonia is typical for the S-type which contradicts the previously determined C-type. We confirmed the moderate-albedo of asteroids (122) Gerda and (152) Atala, but their phase-curves are different from typical for the S-type and may indicate more rare compositional types. Based on magnitude-phase behaviors and V-R colors, (2057) Rosemary most probably belongs to M-type, while asteroids (745) Mauritia and (1113) Katja belong to S-complex. The phase curve of the A-type asteroid (863) Benkoela does not cover the opposition effect range and further observations are needed to understand typical features of the phase-curves of A-type asteroids in comparison with other types. We have also determined lightcurve amplitudes of the observed asteroids and obtained new or improved values of the rotation periods for most of them.
Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bodies cross the K2 fields, usually causing extra noise in the highly accurate photometric data. In this paper we follow the someones noise is another ones signal principle and investigate the possibility of deriving continuous asteroid light curves, that has been unprecedented to date. In general, we are interested in the photometric precision that the K2 Mission can deliver on moving Solar System bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. We study the K2 superstamps covering the M35 and Neptune/Nereid fields observed in the long cadence (29.4-min sampling) mode. Asteroid light curves are generated by applying elongated apertures. We use the Lomb-Scargle method to find periodicities due to rotation. We derived K2 light curves of 924 main-belt asteroids in the M35 field, and 96 in the path of Neptune and Nereid. The light curves are quasi-continuous and several days long. K2 observations are sensitive to longer rotational periods than usual ground-based surveys. Rotational periods are derived for 26 main-belt asteroids for the first time. The asteroid sample is dominated by faint (>20 mag) objects. Due to the faintness of the asteroids and the high density of stars in the M35 field, only 4.0% of the asteroids with at least 12 data points show clear periodicities or trend signalling a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach ~60% in order to successfully recover rotational periods.
Compared with previous space-borne surveys, the Transiting Exoplanet Survey Satellite (TESS) provides a unique and new approach to observe Solar System objects. While its primary mission avoids the vicinity of the ecliptic plane by approximately six degrees, the scale height of the Solar System debris disk is large enough to place various small body populations in the field-of-view. In this paper we present the first data release of photometric analysis of TESS observations of small Solar System Bodies, focusing on the bright end of the observed main-belt asteroid and Jovian Trojan populations. This data release, named TSSYS-DR1, contains 9912 light curves obtained and extracted in a homogeneous manner, and triples the number of bodies with unambiguous fundamental rotation characteristics, namely where accurate periods and amplitudes are both reported. Our catalogue clearly shows that the number of bodies with long rotation periods are definitely underestimated by all previous ground-based surveys, by at least an order of magnitude.
We present the K2 light curves of a large sample of untargeted Main Belt asteroids (MBAs) detected with the Kepler space telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility to obtain precise, uninterrupted light curves of a large number of MBAs and thus to determine unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations indicating that the latter are biased towards shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.