Do you want to publish a course? Click here

Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1

78   0   0.0 ( 0 )
 Added by Andrew McNeill
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-OKeefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of approximately 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 pm 0.13 : 0.71 pm 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.



rate research

Read More

Using the first 18 months of the Pan-STARRS 1 survey we have identified 33 candidate high-amplitude objects for follow-up observations and carried out observations of 22 asteroids. 4 of the observed objects were found to have observed amplitude $A_{obs}geq 1.0$ mag. We find that these high amplitude objects are most simply explained by single rubble pile objects with some density-dependent internal strength, allowing them to resist mass shedding even at their highly elongated shapes. 3 further objects although below the cut-off for high-amplitude had a combination of elongation and rotation period which also may require internal cohesive strength, depending on the density of the body. We find that none of the high-amplitude asteroids identified here require any unusual cohesive strengths to resist rotational fission. 3 asteroids were sufficiently observed to allow for shape and spin pole models to be determined through light curve inversion. 45864 was determined to have retrograde rotation with spin pole axes $lambda=218pm 10^{circ}, beta=-82pm 5^{circ}$ and asteroid 206167 was found to have best fit spin pole axes $lambda= 57 pm 5^{circ}$, $beta=-67 pm 5^{circ}$. An additional object not initially measured with $A_{obs}>1.0$ mag, 49257, was determined to have a shape model which does suggest a high-amplitude object. Its spin pole axes were best fit for values $lambda=112pm 6^{circ}, beta=6pm 5^{circ}$. In the course of this project to date no large super-fast rotators ($P_{rot} < 2.2$ h) have been identified.
We present VRI spectrophotometry of 1003 Main-Belt Asteroids (MBAs) observed with the Sutherland, South Africa, node of the Korea Microlensing Telescope Network (KMTNet). All of the observed MBAs were serendipitously captured in KMTNets large 2deg $times$ 2deg field of view during a separate targeted near-Earth Asteroid study (Erasmus et al. 2017). Our broadband spectrophotometry is reliable enough to distinguish among four asteroid taxonomies and we confidently categorize 836 of the 1003 observed targets as either a S-, C-, X-, or D-type asteroid by means of a Machine Learning (ML) algorithm approach. Our data show that the ratio between S-type MBAs and (C+X+D)-type MBAs, with H magnitudes between 12 and 18 (12 km $gtrsim$ diameter $gtrsim$ 0.75 km), is almost exactly 1:1. Additionally, we report 0.5- to 3-hour (median: 1.3-hour) light-curve data for each MBA and we resolve the complete rotation periods and amplitudes for 59 targets. Two out of the 59 targets have rotation periods potentially below the theoretical zero cohesion boundary limit of 2.2 hours. We report lower limits for the rotation periods and amplitudes for the remaining targets. Using the resolved and unresolved light curves we determine the shape distribution for this population using a Monte Carlo simulation. Our model suggests a population with an average elongation $b/a = 0.74pm0.07$ and also shows that this is independent of asteroid size and taxonomy.
Context. A lot of photometric data is produced by surveys such as Pan-STARRS, LONEOS, WISE or Catalina. These data are a rich source of information about the physical properties of asteroids. There are several possible approaches for utilizing these data. Lightcurve inversion is a typical method that works with individual asteroids. Our approach in this paper is statistical when we focused on large groups of asteroids like dynamical families and taxonomic classes, and the data were not sufficient for individual models. Aims. Our aim was to study the distributions of shape elongation $b/a$ and the spin axis latitude $beta$ for various subpopulations of asteroids and to compare our results, based on Pan-STARRS1 survey, with statistics previously done using different photometric data (Lowell database, WISE data). Methods. We use the LEADER algorithm to compare the $b/a$ and $beta$ distributions for different subpopulations of asteroids. The algorithm creates a cumulative distributive function (CDF) of observed brightness variations, and computes the $b/a$ and $beta$ distributions using analytical basis functions that yield the observed CDF. A variant of LEADER is used to solve the joint distributions for synthetic populations to test the validity of the method. Results. When comparing distributions of shape elongation for groups of asteroids with different diameters $D$, we found that there are no differences for $D < 25$ km. We also constructed distributions for asteroids with different rotation periods and revealed that the fastest rotators with $P = 0 - 4$ h are more spheroidal than the population with $P = 4 - 8$ h.
122 - Pierre Beck , Olivier Poch 2021
The Sloan Digital Sky Survey provides colors for more than 100 000 moving objects, among which around 10 000 have albedos determined. Here we combined colors and albedo in order to perform a cluster analysis on the small bodies population, and identify a C-cluster, a group of asteroid related to C-type as defined in earlier work. Members of this C-cluster are in fair agreement with the color boundaries of B and C-type defined in DeMeo and Carry (2013). We then compare colors of C-cluster asteroids to those of carbonaceous chondrites powders, while taking into account the effect of phase angle. We show that only CM chondrites have colors in the range of C-cluster asteroids, CO, CR and CV chondrites being significantly redder. Also, CM chondrites powders are on average slightly redder than the average C-cluster. The colors of C-cluster members are further investigated by looking at color variations as a function of asteroid diameter. We observe that the visible slope becomes bluer with decreasing asteroids diameter, and a transition seems to be present around 20 km. We discuss the origin of this variation and, if not related to a bias in the dataset - analysis, we conclude that it is related to the surface texture of the objects, smaller objects being covered by rocks, while larger objects are covered by a particulate surface. The blueing is interpreted by an increased contribution of the first reflection in the case of rock-dominated surfaces, which can scatter light in a Rayleigh-like manner. We do not have unambiguous evidence of space weathering within the C-cluster based on this analysis, however the generally bluer nature of C-cluster objects compared to CM chondrites could be to some extent related to space weathering.
101 - R. Szabo , A. Pal , K. Sarneczky 2016
Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bodies cross the K2 fields, usually causing extra noise in the highly accurate photometric data. In this paper we follow the someones noise is another ones signal principle and investigate the possibility of deriving continuous asteroid light curves, that has been unprecedented to date. In general, we are interested in the photometric precision that the K2 Mission can deliver on moving Solar System bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. We study the K2 superstamps covering the M35 and Neptune/Nereid fields observed in the long cadence (29.4-min sampling) mode. Asteroid light curves are generated by applying elongated apertures. We use the Lomb-Scargle method to find periodicities due to rotation. We derived K2 light curves of 924 main-belt asteroids in the M35 field, and 96 in the path of Neptune and Nereid. The light curves are quasi-continuous and several days long. K2 observations are sensitive to longer rotational periods than usual ground-based surveys. Rotational periods are derived for 26 main-belt asteroids for the first time. The asteroid sample is dominated by faint (>20 mag) objects. Due to the faintness of the asteroids and the high density of stars in the M35 field, only 4.0% of the asteroids with at least 12 data points show clear periodicities or trend signalling a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach ~60% in order to successfully recover rotational periods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا