Do you want to publish a course? Click here

All-sky radiometer for narrowband gravitational waves using folded data

104   0   0.0 ( 0 )
 Added by Boris Goncharov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate an all-sky search for persistent, narrowband gravitational waves using mock data. The search employs radiometry to sidereal-folded data in order to uncover persistent sources of gravitational waves with minimal assumptions about the signal model. The method complements continuous-wave searches, which are finely tuned to search for gravitational waves from rotating neutron stars while providing a means of detecting more exotic sources that might be missed by dedicated continuous-wave techniques. We apply the algorithm to simulated Gaussian noise at the level of LIGO design sensitivity. We project the strain amplitude sensitivity for the algorithm for a LIGO network in the first observing run to be $h_0 approx 1.2 times 10^{-24}$ ($1%$ false alarm probability, $10%$ false dismissal probability). We include treatment of instrumental lines and detector artifacts using time-shifted LIGO data from the first observing run.



rate research

Read More

Gravitational-wave radiometry is a powerful tool by which weak signals with unknown signal morphologies are recovered through a process of cross correlation. Radiometry has been used, e.g., to search for persistent signals from known neutron stars such as Scorpius X-1. In this paper, we demonstrate how a more ambitious search--for persistent signals from unknown neutron stars--can be efficiently carried out using folded data, in which an entire ~year-long observing run is represented as a single sidereal day. The all-sky, narrowband radiometer search described here will provide a computationally tractable means to uncover gravitational-wave signals from unknown, nearby neutron stars in binary systems, which can have modulation depths of ~0.1-2 Hz. It will simultaneously provide a sensitive search algorithm for other persistent, narrowband signals from unexpected sources.
We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($textit{FrequencyHough}$, $textit{SkyHough}$, and $textit{Time-Domain $mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1times10^{-8}$ to $2times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the lowest upper limit on $h_0$ is $1.7times10^{-25}$ in the 123-124 Hz region) and discuss the astrophysical implications of this result. This is the most sensitive search ever performed over the broad range of parameters explored in this study.
We conduct an all-sky search for continuous gravitational waves in the LIGO O2 data from the Hanford and Livingston detectors. We search for nearly-monochromatic signals with frequency between 20.0 Hz and 585.15 Hz and spin-down between -2.6e-9 Hz/s and 2.6e-10 Hz/s. We deploy the search on the Einstein@Home volunteer-computing project and follow-up the waveforms associated with the most significant results with eight further search-stages, reaching the best sensitivity ever achieved by an all-sky survey up to 500 Hz. Six of the inspected waveforms pass all the stages but they are all associated with hardware-injections, which are fake signals simulated at the LIGO detector for validation purposes. We recover all these fake signals with consistent parameters. No other waveform survives, so we find no evidence of a continuous gravitational wave signal at the detectability level of our search. We constrain the h0 amplitude of continuous gravitational waves at the detector as a function of the signal frequency, in half-Hz bins. The most constraining upper limit at 163.0 Hz is h0 = 1.3e25, at the 90% confidence level. Our results exclude neutron stars rotating faster than 5 ms with equatorial ellipticities larger than 1e-7 closer than 100 pc. These are deformations that neutron star crusts could easily support, according to some models.
While a fully-coherent all-sky search is known to be optimal for detecting gravitational wave signals from compact binary coalescences, its high computational cost has limited current searches to less sensitive coincidence-based schemes. Following up on previous work that has demonstrated the effectiveness of Particle Swarm Optimization in reducing the computational cost of this search, we present an implementation that achieves near real-time computational speed. This is achieved by combining the search efficiency of PSO with a significantly revised and optimized numerical implementation of the underlying mathematical formalism along with additional multi-threaded parallelization layers in a distributed computing framework. For a network of four second-generation detectors with $60$~min data from each, the runtime of the implementation presented here ranges between $approx 1.4$ to $approx 0.5$ times the data duration for network signal-to-noise ratios (SNRs) of $gtrsim 10$ and $gtrsim 12$, respectively. The reduced runtimes are obtained with small to negligible losses in detection sensitivity: for a false alarm rate of $simeq 1$~event per year in Gaussian stationary noise, the loss in detection probability is $leq 5%$ and $leq 2%$ for SNRs of $10$ and $12$, respectively. Using the fast implementation, we are able to quantify frequentist errors in parameter estimation for signals in the double neutron star mass range using a large number of simulated data realizations. A clear dependence of parameter estimation errors and detection sensitivity on the condition number of the network antenna pattern matrix is revealed. Combined with previous work, this paper securely establishes the effectiveness of PSO-based fully-coherent all-sky search across the entire binary inspiral mass range that is relevant to ground-based detectors.
We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, i.e. neutron stars. A new hierarchical multi-stage approach is taken, supported by the computing power of the Einstein@Home project, allowing to probe more deeply than ever before. 16 million sub-threshold candidates from the initial search [LVC,arXiv:1606.09619] are followed up in three stages. None of those candidates is consistent with an isolated gravitational wave emitter, and 90% confidence level upper limits are placed on the amplitudes of continuous waves from the target population. Between 170.5 and 171 Hz we set the most constraining 90% confidence upper limit on the strain amplitude h0 at 4.3x10-25 , while at the high end of our frequency range we achieve an upper limit of 7.6x10-25. These are the most constraining all-sky upper limits to date and constrain the ellipticity of rotating compact objects emitting at 300 Hz at a distance D to less than 6x10-7 [d/100pc].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا