Do you want to publish a course? Click here

All-sky, narrowband, gravitational-wave radiometry with folded data

388   0   0.0 ( 0 )
 Added by Eric Thrane
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational-wave radiometry is a powerful tool by which weak signals with unknown signal morphologies are recovered through a process of cross correlation. Radiometry has been used, e.g., to search for persistent signals from known neutron stars such as Scorpius X-1. In this paper, we demonstrate how a more ambitious search--for persistent signals from unknown neutron stars--can be efficiently carried out using folded data, in which an entire ~year-long observing run is represented as a single sidereal day. The all-sky, narrowband radiometer search described here will provide a computationally tractable means to uncover gravitational-wave signals from unknown, nearby neutron stars in binary systems, which can have modulation depths of ~0.1-2 Hz. It will simultaneously provide a sensitive search algorithm for other persistent, narrowband signals from unexpected sources.



rate research

Read More

We demonstrate an all-sky search for persistent, narrowband gravitational waves using mock data. The search employs radiometry to sidereal-folded data in order to uncover persistent sources of gravitational waves with minimal assumptions about the signal model. The method complements continuous-wave searches, which are finely tuned to search for gravitational waves from rotating neutron stars while providing a means of detecting more exotic sources that might be missed by dedicated continuous-wave techniques. We apply the algorithm to simulated Gaussian noise at the level of LIGO design sensitivity. We project the strain amplitude sensitivity for the algorithm for a LIGO network in the first observing run to be $h_0 approx 1.2 times 10^{-24}$ ($1%$ false alarm probability, $10%$ false dismissal probability). We include treatment of instrumental lines and detector artifacts using time-shifted LIGO data from the first observing run.
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 times 10^{-10}$ Hz/s and $+1.5 times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. Selected candidates have been subject to a follow-up by constructing a new set of longer FFTs followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, therefore we have set a population-based joint VSR2-VSR4 90$%$ confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 Hz and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about $10^{-24}$ and $2times 10^{-23}$ at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of $sim$2 with respect to the results of previous all-sky searches at frequencies below $80~mathrm{Hz}$.
138 - Sarah Burke-Spolaor 2015
We have begun an exciting era for gravitational wave detection, as several world-leading experiments are breaching the threshold of anticipated signal strengths. Pulsar timing arrays (PTAs) are pan-Galactic gravitational wave detectors that are already cutting into the expected strength of gravitational waves from cosmic strings and binary supermassive black holes in the nHz-$mu$Hz gravitational wave band. These limits are leading to constraints on the evolutionary state of the Universe. Here, we provide a broad review of this field, from how pulsars are used as tools for detection, to astrophysical sources of uncertainty in the signals PTAs aim to see, to the primary current challenge areas for PTA work. This review aims to provide an up-to-date reference point for new parties interested in the field of gravitational wave detection via pulsar timing.
The first terrestrial gravitational wave interferometers have dramatically underscored the scientific value of observing the Universe through an entirely different window, and of folding this new channel of information with traditional astronomical data for a multimessenger view. The Laser Interferometer Space Antenna (LISA) will broaden the reach of gravitational wave astronomy by conducting the first survey of the millihertz gravitational wave sky, detecting tens of thousands of individual astrophysical sources ranging from white-dwarf binaries in our own galaxy to mergers of massive black holes at redshifts extending beyond the epoch of reionization. These observations will inform - and transform - our understanding of the end state of stellar evolution, massive black hole birth, and the co-evolution of galaxies and black holes through cosmic time. LISA also has the potential to detect gravitational wave emission from elusive astrophysical sources such as intermediate-mass black holes as well as exotic cosmological sources such as inflationary fields and cosmic string cusps.
Within the next several years, pulsar-timing array programs will likely usher in the next era of gravitational-wave astronomy through the detection of a stochastic background of nanohertz-frequency gravitational waves, originating from a cosmological population of inspiraling supermassive binary black holes. While the source positions will likely be isotropic to a good approximation, the gravitational-wave angular power distribution will be anisotropic, with the most massive and/or nearby binaries producing signals that may resound above the background. We study such a realistic angular power distribution, developing fast and accurate sky-mapping strategies to localize pixels and extended regions of excess power while simultaneously modeling the background signal from the less massive and more distant ensemble. We find that power anisotropy will be challenging to discriminate from isotropy for realistic gravitational-wave skies, requiring SNR $>10$ in order to favor anisotropy with $10:1$ posterior odds in our case study. Amongst our techniques, modeling the population signal with multiple point sources in addition to an isotropic background provides the most physically-motivated and easily interpreted maps, while spherical-harmonic modeling of the square-root power distribution, $P(hatOmega)^{1/2}$, performs best in discriminating from overall isotropy. Our techniques are modular and easily incorporated into existing pulsar-timing array analysis pipelines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا