Do you want to publish a course? Click here

Searching for crystal-ice domains in amorphous ices

124   0   0.0 ( 0 )
 Added by Fausto Martelli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ classical molecular dynamics simulations to investigate the molecular-level structure of water during the isothermal compression of hexagonal ice (I$h$) and low-density amorphous (LDA) ice at low temperatures. In both cases, the system transforms to high-density amorphous ice (HDA) via a first-order-like phase transition. We employ a sensitive local order metric (LOM) [Martelli et. al., Phys. Rev. B, 97, 064105 (2018)], that can discriminate among different crystalline and non crystalline ice structures and is based on the positions of the oxygen atoms in the first and/or second hydration shell. Our results confirm that LDA and HDA are indeed amorphous, i.e., they lack of polydispersed ice domains. Interestingly, HDA contains a small number of domains that are reminiscent of the unit cell of ice IV, although the hydrogen-bond network (HBN) of these domains differ from the HBN of ice IV. The presence of ice IV-like domains provides some support to the hypothesis that HDA could be the result of a detour on the HBN rearrangement along the I$h$-to-ice IV pressure induced transformation. Both nonequilibrium LDA-to-HDA and I$h$-to-HDA transformations are two-steps processes where a small distortion of the HBN first occurs at low pressures and then, a sudden, extensive re-arrangement of hydrogen bonds at the corresponding transformation pressure follows. Interestingly, the I$h$-to-HDA and LDA-to-HDA transformations occur when LDA and I$h$ have similar local order, as quantified by the site-averaged LOMs. Since I$h$ has a perfect tetrahedral HBN, while LDA does not, it follows that higher pressures are needed to transform I$h$ into HDA than that for the conversion of LDA to HDA. In correspondence with both first-order-like phase transitions, the samples are composed of a large HDA cluster that percolates within the I$h$/LDA samples.



rate research

Read More

We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice (LDA) at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.
58 - Wen-Han Kao , Gia-Wei Chern , 2019
We study the two-dimensional kagome-ice model derived from a pyrochlore lattice with second- and third-neighbor interactions. The canted moments align along the local $langle 111 rangle$ axes of the pyrochlore and respond to both in-plane and out-of-plane external fields. We find that the combination of further-neighbor interactions together with the external fields introduces a rich phase diagram with different spin textures. Close to the phase boundaries, metastable $textit{snake}$ domains emerge with extremely long relaxation time. Our kinetic Monte Carlo analysis of the magnetic-field quench process from saturated state shows unusually slow dynamics. Despite that the interior spins are almost frozen in snake domains, the spins on the edge are free to fluctuate locally, leading to frequent creation and annihilation of monopole-anti-monopole bound states. Once the domains are formed, these excitations are localized and can hardly propagate due to the energy barrier of snakes. The emergence of such snake domains may shed light on the experimental observation of dipolar spin ice under tilted fields, and provide a new strategy to manipulate both spin and charge textures in artificial spin ice.
The ultraviolet (UV) photodissociation of amorphous water ice at different ice temperatures is investigated using molecular dynamics (MD) simulations and analytical potentials. Previous MD calculations of UV photodissociation of amorphous and crystalline water ice at 10 K [S. Andersson et al., J. Chem. Phys. 124, 064715 (2006)] revealed -for both types of ice- that H atom, OH, and H2O desorption are the most important processes after photoexcitation in the uppermost layers of the ice. Water desorption takes place either by direct desorption of recombined water, or when, after dissociation, an H atom transfers part of its kinetic energy to one of the surrounding water molecules which is thereby kicked out from the ice. We present results of MD simulations of UV photodissociation of amorphous ice at 10, 20, 30, and 90 K in order to analyze the effect of ice temperature on UV photodissociation processes. Desorption and trapping probabilities are calculated for photoexcitation of H2O in the top four monolayers and the main conclusions are in agreement with the 10 K results: desorption dominates in the top layers, while trapping occurs deeper in the ice. The hydrogen atom photodesorption probability does not depend on ice temperature, but OH and H2O photodesorption probabilities tend to increase slightly (~30%) with ice temperature. We have compared the total photodesorption probability (OH+H2O) with the experimental total photodesorption yield, and in both cases the probabilities rise smoothly with ice temperature. The experimental yield is on average 3.8 times larger than our theoretical results, which can be explained by the different time scales studied and the approximations in our model.
Cathodes are critical components of rechargeable batteries. Conventionally, the search for cathode materials relies on experimental trial-and-error and a traversing of existing computational/experimental databases. While these methods have led to the discovery of several commercially-viable cathode materials, the chemical space explored so far is limited and many phases will have been overlooked, in particular those that are metastable. We describe a computational framework for battery cathode exploration, based on ab initio random structure searching (AIRSS), an approach that samples local minima on the potential energy surface to identify new crystal structures. We show that, by delimiting the search space using a number of constraints, including chemically aware minimum interatomic separations, cell volumes, and space group symmetries, AIRSS can efficiently predict both thermodynamically stable and metastable cathode materials. Specifically, we investigate LiCoO2, LiFePO4, and LixCuyFz to demonstrate the efficiency of the method by rediscovering the known crystal structures of these cathode materials. The effect of parameters, such as minimum separations and symmetries, on the efficiency of the sampling is discussed in detail. The adaptation of the minimum interatomic distances, on a species-pair basis, from low-energy optimized structures to efficiently capture the local coordination environment of atoms, is explored. A family of novel cathode materials based, on the transition-metal oxalates,is proposed. They demonstrate superb energy density, oxygen-redox stability, and lithium diffusion properties. This article serves both as an introduction to the computational framework, and as a guide to battery cathode material discovery using AIRSS.
92 - R. Dupuy , M. Bertin , G. Feraud 2021
We report an investigation of X-ray induced desorption of neutrals, cations and anions from CO ice. The desorption of neutral CO, by far the most abundant, is quantified and discussed within the context of its application to astrochemistry. The desorption of many different cations, including large cations up to the mass limit of the spectrometer, are observed. In contrast, the only desorbing anions detected are O$^-$ and C$^-$. The desorption mechanisms of all these species are discussed with the aid of their photodesorption spectrum. The evolution of the X-ray absorption spectrum shows significant chemical modifications of the ice upon irradiation, which along with the desorption of large cations gives a new insight into X-ray induced photochemistry in CO ice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا