No Arabic abstract
The ultraviolet (UV) photodissociation of amorphous water ice at different ice temperatures is investigated using molecular dynamics (MD) simulations and analytical potentials. Previous MD calculations of UV photodissociation of amorphous and crystalline water ice at 10 K [S. Andersson et al., J. Chem. Phys. 124, 064715 (2006)] revealed -for both types of ice- that H atom, OH, and H2O desorption are the most important processes after photoexcitation in the uppermost layers of the ice. Water desorption takes place either by direct desorption of recombined water, or when, after dissociation, an H atom transfers part of its kinetic energy to one of the surrounding water molecules which is thereby kicked out from the ice. We present results of MD simulations of UV photodissociation of amorphous ice at 10, 20, 30, and 90 K in order to analyze the effect of ice temperature on UV photodissociation processes. Desorption and trapping probabilities are calculated for photoexcitation of H2O in the top four monolayers and the main conclusions are in agreement with the 10 K results: desorption dominates in the top layers, while trapping occurs deeper in the ice. The hydrogen atom photodesorption probability does not depend on ice temperature, but OH and H2O photodesorption probabilities tend to increase slightly (~30%) with ice temperature. We have compared the total photodesorption probability (OH+H2O) with the experimental total photodesorption yield, and in both cases the probabilities rise smoothly with ice temperature. The experimental yield is on average 3.8 times larger than our theoretical results, which can be explained by the different time scales studied and the approximations in our model.
At the high densities and low temperatures found in star forming regions, all molecules other than H2 should stick on dust grains on timescales shorter than the cloud lifetimes. Yet these clouds are detected in the millimeter lines of gaseous CO. At these temperatures, thermal desorption is negligible and hence a non-thermal desorption mechanism is necessary to maintain molecules in the gas phase. Here, the first laboratory study of the photodesorption of pure CO ice under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5 larger than previously estimated and is comparable to estimates of other non-thermal desorption rates. The experiments constrains the mechanism to a single photon desorption process of ice surface molecules. The measured efficiency of this process shows that the role of CO photodesorption in preventing total removal of molecules in the gas has been underestimated.
The inter oxygen repulsion opposes compression minimizing the compressibility. Polarization enlarges the bandgap and the dielectric permittivity of water ice by raising the nonbonding states above the Fermi energy. Progress evidences the efficiency and essentiality of the coupled hydrogen bonding and electronic dynamics in revealing the core physics and chemistry of water ice, which could extend to other molecular crystals such as energetic materials.
Electronic excitations near the surface of water ice lead to the desorption of adsorbed molecules, through a so far debated mechanism. A systematic study of photon-induced indirect desorption, revealed by the spectral dependence of the desorption (7 to 13 eV), is conducted for Ar, Kr, N2, and CO adsorbed on H2O or D2O amorphous ices. The mass and isotopic dependence and the increase of intrinsic desorption efficiency with photon energy all point to a mechanism of desorption induced by collisions between adsorbates and energetic H or D atoms, produced by photodissociation of water. This constitutes a direct and unambiguous experimental demonstration of the mechanism of indirect desorption of weakly adsorbed species on water ice, and sheds new light on the possibility of this mechanism in other systems. It also has implications for the description of photon-induced desorption in astrochemical models.
Molecular dynamics (MD) simulations are used to investigate $^1$H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk $n$-C$_5$H$_{12}$ to $n$-C$_{17}$H$_{36}$ hydrocarbons and bulk water. The MD simulations of the $^1$H NMR relaxation times $T_{1,2}$ in the fast motion regime where $T_1 = T_2$ agree with measured (de-oxygenated) $T_2$ data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion $D_T$ coefficients calculated using simulation configurations are well-correlated with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.
Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a methodology for calculating the profiles of electrostatic potential based on a trial particle, which showed good agreement for the case of electrostatic potential profile of the water-vapor interface of TIP4P model calculated in another way. The measured profile of electrostatic potential for the pure ice-water interface decreases towards the liquid bulk region, which is in agreement with simulations of preferential direction of motion of Li$^{+}$ and F$^{-}$ solute ions at the liquid side of the ice-water interface. These results are discussed in connection with the Workman-Reynolds effect.