No Arabic abstract
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the two-loop $epsilon$-expansion, two-loop fixed-dimension renormalization group, and non-perturbative functional renormalization group. An interacting, real, infrared-stable fixed point is found near six dimensions, and the corresponding anomalous dimensions are computed to the second order in small parameter $epsilon=6-d$. Two-loop epsilon-expansion indicates, however, that the second-order corrections may destabilize the fixed point at some critical $epsilon_c <1$. A more detailed analysis within all three computational schemes suggests that the interacting, infrared-stable fixed point found previously collides with another fixed point and becomes complex when the dimension is lowered from six towards five. Such a result would conform to the expectation of triviality of $O(2)$ field theories above four dimensions.
In search of non-trivial field theories in high dimensions, we study further the tensor representation of the $O(N)$-symmetric $phi^4$ field theory introduced by Herbut and Janssen (Phys. Rev. D. 93, 085005 (2016)), by using four-loop perturbation theory in two cubic interaction coupling constants near six dimensions. For infinitesimal values of the parameter $epsilon=(6-d)/2$ we find infrared-stable fixed point with two relevant quadratic operators for $N$ within the conformal windows $1<N<2.653$ and $2.999<N<4$, and compute critical exponents at this fixed point to the order $epsilon^4$. Taking the four-loop beta-functions at their face value we determine the higher-order corrections to the edges of the above conformal windows at finite $epsilon$, to find both intervals to shrink to zero above $epsilonapprox 0.15$. The disappearance of the conformal windows with the increase of $epsilon$ is due to the collision of the Wilson-Fisher $mathcal{O}(epsilon)$ infrared fixed point with the $mathcal{O}(1)$ mixed-stable fixed point that appears at two and persists at higher loops. The latter may be understood as a Banks-Zaks type fixed point that becomes weakly coupled near the right edge of either conformal window. The consequences and issues raised by such an evolution of the flow with dimension are discussed. It is also shown both within the perturbation theory and exactly that the tensor representation at $N=3$ and right at the $mathcal{O}(epsilon)$ infrared-stable fixed point exhibits an emergent $U(3)$ symmetry. A role of this enlarged symmetry in possible protection of the infrared fixed point at $N=3$ is noted.
We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d $O(2)$ model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old $8sigma$ discrepancy between theory and experiment.
We study global quenches in a number of interacting quantum field theory models away from the conformal regime. We conduct a perturbative renormalization at one-loop level and track the modifications of the quench protocol induced by the renormalization group flow. The scaling of various observables at early times is evaluated in the regime of rapid quench rates, with a particular emphasis placed on the leading order effects that cannot be recovered using the finite order conformal perturbation theory. We employ the canonical ideas of effective action to verify our results and discuss a potential route towards understanding the late time dynamics.
We compute critical exponents of O(N) models in fractal dimensions between two and four, and for continuos values of the number of field components N, in this way completing the RG classification of universality classes for these models. In d=2 the N-dependence of the correlation length critical exponent gives us the last piece of information needed to establish a RG derivation of the Mermin-Wagner theorem. We also report critical exponents for multi-critical universality classes in the cases N>1 and N=0. Finally, in the large-N limit our critical exponents correctly approach those of the spherical model, allowing us to set N~100 as threshold for the quantitative validity of leading order large-N estimates.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.