No Arabic abstract
In search of non-trivial field theories in high dimensions, we study further the tensor representation of the $O(N)$-symmetric $phi^4$ field theory introduced by Herbut and Janssen (Phys. Rev. D. 93, 085005 (2016)), by using four-loop perturbation theory in two cubic interaction coupling constants near six dimensions. For infinitesimal values of the parameter $epsilon=(6-d)/2$ we find infrared-stable fixed point with two relevant quadratic operators for $N$ within the conformal windows $1<N<2.653$ and $2.999<N<4$, and compute critical exponents at this fixed point to the order $epsilon^4$. Taking the four-loop beta-functions at their face value we determine the higher-order corrections to the edges of the above conformal windows at finite $epsilon$, to find both intervals to shrink to zero above $epsilonapprox 0.15$. The disappearance of the conformal windows with the increase of $epsilon$ is due to the collision of the Wilson-Fisher $mathcal{O}(epsilon)$ infrared fixed point with the $mathcal{O}(1)$ mixed-stable fixed point that appears at two and persists at higher loops. The latter may be understood as a Banks-Zaks type fixed point that becomes weakly coupled near the right edge of either conformal window. The consequences and issues raised by such an evolution of the flow with dimension are discussed. It is also shown both within the perturbation theory and exactly that the tensor representation at $N=3$ and right at the $mathcal{O}(epsilon)$ infrared-stable fixed point exhibits an emergent $U(3)$ symmetry. A role of this enlarged symmetry in possible protection of the infrared fixed point at $N=3$ is noted.
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the two-loop $epsilon$-expansion, two-loop fixed-dimension renormalization group, and non-perturbative functional renormalization group. An interacting, real, infrared-stable fixed point is found near six dimensions, and the corresponding anomalous dimensions are computed to the second order in small parameter $epsilon=6-d$. Two-loop epsilon-expansion indicates, however, that the second-order corrections may destabilize the fixed point at some critical $epsilon_c <1$. A more detailed analysis within all three computational schemes suggests that the interacting, infrared-stable fixed point found previously collides with another fixed point and becomes complex when the dimension is lowered from six towards five. Such a result would conform to the expectation of triviality of $O(2)$ field theories above four dimensions.
We use numerical bootstrap techniques to study correlation functions of a traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model $ARP^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet.
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the analytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series in $varepsilon=4-d$ and in $1/n$, with a method that generalizes to arbitrary global symmetry. Whenever comparison is possible, our results agree with earlier results obtained with diagrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide variety of operator dimension bounds, and we find several islands (isolated allowed regions) in parameter space for $O(2)times O(n)$ theories for various values of $n$. Some of these islands can be attributed to fixed points predicted by perturbative methods like the $varepsilon$ and large-$n$ expansions, while others appear to arise due to fixed points that have been claimed to exist in resummations of perturbative beta functions.
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order $1/N$, and the CFT-data for the non-singlet currents to order $1/N^2$. To order $1/N$ our results are in perfect agreement with those in the literature. To order $1/N^2$ we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge $C_J$ to this order.
We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d $O(2)$ model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old $8sigma$ discrepancy between theory and experiment.