Do you want to publish a course? Click here

Black-Phosphorus Terahertz Photodetectors

77   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive impact in a variety of photonic applications, the absence of energy gap has hampered its broader applicability in many optoelectronic devices. The recent advance of novel 2D materials, such as transition-metal dichalcogenides or atomically thin elemental materials, (e.g. silicene, germanene and phosphorene) promises a revolutionary step-change. Here we devise the first room-temperature Terahertz (THz) frequency detector exploiting few-layer phosphorene, e.g., a 10 nm thick flake of exfoliated crystalline black phosphorus (BP), as active channel of a field-effect transistor (FET). By exploiting the direct band gap of BP to fully switch between insulating and conducting states and by engineering proper antennas for efficient light harvesting, we reach detection performance comparable with commercial detection technologies, providing the first technological demonstration of a phosphorus-based active THz device.



rate research

Read More

The discovery of graphene triggered a rapid rise of unexplored two-dimensional materials and heterostructures having optoelectronic and photonics properties that can be tailored on the nanoscale. Among these materials, black phosphorus (BP) has attracted a remarkable interest thanks to many favorable properties, such as high carrier mobility, in-plane anisotropy, the possibility to alter its transport via electrical gating and direct band-gap, that can be tuned by thickness from 0.3 eV (bulk crystalline) to 1.7 eV (single atomic layer). When integrated in a microscopic field effect transistor (FET), a few-layer BP flake can detect Terahertz (THz) frequency radiation. Remarkably, the in-plane crystalline anisotropy can be exploited to tailor the mechanisms that dominate the photoresponse; a BP-based field effect transistor can be engineered to act as a plasma-wave rectifier, a thermoelectric sensor or a thermal bolometer. Here we present a review on recent research on BP detectors operating from 0.26 THz to 3.4 THz with particular emphasis on the underlying physical mechanisms and the future challenges that are yet to be addressed for making BP the active core of stable and reliable optical and electronic technologies.
Layered and two-dimensional (2D) materials such as graphene, boron nitride, transition metal dichalcogenides(TMDCs), and black phosphorus (BP) have intriguing fundamental physical properties and bear promise of numerous important applications in electronics and optics. Of them, BP is a novel 2D material that has been theoretically predicted to acquire plasmonic behavior for frequencies below ~0.4 eV when highly doped. The electronic properties of BP are unique due to an anisotropic structure, which could strongly influence collective electronic excitations. Advantages of BP as a material for nanoelectronics and nanooptics are due to the fact that, in contrast to metals, the free carrier density in it can be dynamically controlled by electrostatic gating, which has been demonstrated by its use in field-effect transistors. Despite all the interest that BP attracts, near-field and plasmonic properties of BP have not yet been investigated experimentally. Here we report the first observation of nanoscopic near-field properties of BP. We have discovered near field patterns of outside bright fringes and high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared (mid-IR) frequencies. This behavior is highly frequency-dispersive, disappearing above frequency, {omega} =1070 cm-1, which allowed us to estimate the plasma frequency and carrier density. We have also observed similar behavior in other 2D semiconductors such as TMDCs but not in 2D insulators such as boron nitride. This new phenomenon is attributed to surface charging of the semiconductor nanofilms. This discovery opens up a new field of research and potential applications in nanoplasmonics and optoelectronics.
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in situ on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
We report about the energy and momentum resolved optical response of black phosphorus (BP) in its bulk form. Along the armchair direction of the puckered layers we find a highly dispersive mode that is trongly suppressed in the perpendicular (zig-zag) direction. This mode emerges out of the single-particle continuum for finite values of momentum and is therefore interpreted as an exciton. We argue that this exciton, which has already been predicted theoretically for phosphorene -- the monolayer form of BP -- can be detected by conventional optical spectroscopy in the two-dimensional case and might pave the way for optoelectronic applications of this emerging material.
Motivated by recent experimental observation of an hydrostatic pressure induced transition from semiconductor to semimetal in black phosphorus [Chen et al. in arXiv:1504.00125], we present the first principles calculation on the pressure effect of the electronic structures of black phosphorus. It is found that the band crossover and reversal at the Z point occur around the critical pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma point and evolve into two hole-type Fermi pockets, and those in the Z-M lines move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0 Gpa. It demonstrates clearly that the Lifshitz transition occurs at $P_{c1}$ from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space symmetry of bulk. This suggests the bright perspective of black phosphorus for optoelectronic and electronic devices due to its easy modulation by pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا