No Arabic abstract
The discovery of graphene triggered a rapid rise of unexplored two-dimensional materials and heterostructures having optoelectronic and photonics properties that can be tailored on the nanoscale. Among these materials, black phosphorus (BP) has attracted a remarkable interest thanks to many favorable properties, such as high carrier mobility, in-plane anisotropy, the possibility to alter its transport via electrical gating and direct band-gap, that can be tuned by thickness from 0.3 eV (bulk crystalline) to 1.7 eV (single atomic layer). When integrated in a microscopic field effect transistor (FET), a few-layer BP flake can detect Terahertz (THz) frequency radiation. Remarkably, the in-plane crystalline anisotropy can be exploited to tailor the mechanisms that dominate the photoresponse; a BP-based field effect transistor can be engineered to act as a plasma-wave rectifier, a thermoelectric sensor or a thermal bolometer. Here we present a review on recent research on BP detectors operating from 0.26 THz to 3.4 THz with particular emphasis on the underlying physical mechanisms and the future challenges that are yet to be addressed for making BP the active core of stable and reliable optical and electronic technologies.
The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive impact in a variety of photonic applications, the absence of energy gap has hampered its broader applicability in many optoelectronic devices. The recent advance of novel 2D materials, such as transition-metal dichalcogenides or atomically thin elemental materials, (e.g. silicene, germanene and phosphorene) promises a revolutionary step-change. Here we devise the first room-temperature Terahertz (THz) frequency detector exploiting few-layer phosphorene, e.g., a 10 nm thick flake of exfoliated crystalline black phosphorus (BP), as active channel of a field-effect transistor (FET). By exploiting the direct band gap of BP to fully switch between insulating and conducting states and by engineering proper antennas for efficient light harvesting, we reach detection performance comparable with commercial detection technologies, providing the first technological demonstration of a phosphorus-based active THz device.
Ultrafast and sensitive (noise equivalent power <1 nWHz-1/2) light-detection in the Terahertz (THz) frequency range (0.1-10 THz) and at room-temperature is key for applications such as time-resolved THz spectroscopy of gases, complex molecules and cold samples, imaging, metrology, ultra-high-speed data communications, coherent control of quantum systems, quantum optics and for capturing snapshots of ultrafast dynamics, in materials and devices, at the nanoscale. Here, we report room-temperature THz nano-receivers exploiting antenna-coupled graphene field effect transistors integrated with lithographically-patterned high-bandwidth (~100 GHz) chips, operating with a combination of high speed (hundreds ps response time) and high sensitivity (noise equivalent power <120 pWHz-1/2) at 3.4 THz. Remarkably, this is achieved with various antenna and transistor architectures (single-gate, dual-gate), whose operation frequency can be extended over the whole 0.1-10 THz range, thus paving the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspective for targeting the aforementioned applications.
Silicon photonics is being extended from the near-infrared (near-IR) window of 1.3-1.5 {mu}m for optical fiber communications to the mid-infrared (mid-IR) wavelength-band of 2 {mu}m or longer for satisfying the increasing demands in many applications. Mid-IR waveguide photodetectors on silicon have attracted intensive attention as one of the indispensable elements for various photonic systems. Previously high-performance waveguide photodetectors on silicon were realized for the near-IR window of 1.3-1.5 {mu}m by introducing another semiconductor material (e.g., Ge, and III-V compounds) in the active region. Unfortunately, these traditional semiconductor materials do not work well for the wavelength of ~2 {mu}m or longer because the light absorption becomes very weak. As an alternative, two-dimensional materials provide a new and promising option for enabling active photonic devices on silicon. Here black-phosphorus (BP) thin films with optimized medium thicknesses (~40 nm) are introduced as the active material for light absorption and silicon/BP hybrid ridge waveguide photodetectors are demonstrated with a high responsivity at a low bias voltage. And up to 4.0Gbps data transmission is achieved at 2{mu}m.
We report on experimental demonstration of a new type of nanoelectromechanical resonators based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200nm down to ~20nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting promises for moveable and vibratory devices, and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.
Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this work we explore the use of THz frequencies as a means to achieve quantum communication within a constellation of micro-satellites in Low-Earth-Orbit (LEO). Quantum communication between the micro-satellite constellation and high-altitude terrestrial stations is also investigated. Our work demonstrates that THz quantum entanglement distribution and THz quantum key distribution are viable deployment options in the micro-satellite context. We discuss how such deployment opens up the possibility for simpler integration of global quantum and wireless networks. The possibility of using THz frequencies for quantum-radar applications in the context of LEO deployments is briefly discussed.