Do you want to publish a course? Click here

Orbital quantum magnetism in spin dynamics of strongly interacting magnetic lanthanide atoms

83   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Laser cooled lanthanide atoms are ideal candidates with which to study strong and unconventional quantum magnetism with exotic phases. Here, we use state-of-the-art closed-coupling simulations to model quantum magnetism for pairs of ultracold spin-6 erbium lanthanide atoms placed in a deep optical lattice. In contrast to the widely used single-channel Hubbard model description of atoms and molecules in an optical lattice, we focus on the single-site multi-channel spin evolution due to spin-dependent contact, anisotropic van der Waals, and dipolar forces. This has allowed us to identify the leading mechanism, orbital anisotropy, that governs molecular spin dynamics among erbium atoms. The large magnetic moment and combined orbital angular momentum of the 4f-shell electrons are responsible for these strong anisotropic interactions and unconventional quantum magnetism. Multi-channel simulations of magnetic Cr atoms under similar trapping conditions show that their spin-evolution is controlled by spin-dependent contact interactions that are distinct in nature from the orbital anisotropy in Er. The role of an external magnetic field and the aspect ratio of the lattice site on spin dynamics is also investigated.



rate research

Read More

Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.
We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe evidence for conditional dynamics of two atoms simultaneously coupled to the cavity mode. Our results point towards the realization of measurement-induced entanglement schemes for neutral atoms in optical cavities.
The decoupling of spin and density dynamics is a remarkable feature of quantum one-dimensional many-body systems. In a few-body regime, however, little is known about this phenomenon. To address this problem, we study the time evolution of a small system of strongly interacting fermions after a sudden change in the trapping geometry. We show that, even at the few-body level, the excitation spectrum of this system presents separate signatures of spin and density dynamics. Moreover, we describe the effect of considering additional internal states with SU(N) symmetry, which ultimately leads to the vanishing of spin excitations in a completely balanced system.
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to different fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا