No Arabic abstract
The decoupling of spin and density dynamics is a remarkable feature of quantum one-dimensional many-body systems. In a few-body regime, however, little is known about this phenomenon. To address this problem, we study the time evolution of a small system of strongly interacting fermions after a sudden change in the trapping geometry. We show that, even at the few-body level, the excitation spectrum of this system presents separate signatures of spin and density dynamics. Moreover, we describe the effect of considering additional internal states with SU(N) symmetry, which ultimately leads to the vanishing of spin excitations in a completely balanced system.
We develop a theory for light propagating in an atomic Bose-Einstein condensate in the presence of strong interactions. The resulting many-body correlations are shown to have profound effects on the optical properties of this interacting medium. For weak atom-light coupling, there is a well-defined quasiparticle, the polaron-polariton, supporting light propagation with spectral features differing significantly from the noninteracting case. The damping of the polaron-polariton depends nonmonotonically on the light-matter coupling strength, initially increasing and then decreasing. This gives rise to an interesting crossover between two quasiparticles: a bare polariton and a polaron-polariton, separated by a complex and lossy mixture of light and matter.
Quantum mechanical few-body systems in reduced dimensionalities can exhibit many interesting properties such as scale-invariance and universality. Analytical descriptions are often available for integer dimensionality, however, numerical approaches are necessary for addressing dimensional transitions. The Fully-Correlated Gaussian method provides a variational description of the few-body real-space wavefunction. By placing the particles in a harmonic trap, the system can be described at various degrees of anisotropy by squeezing the confinement. Through this approach, configurations of two and three identical bosons as well as heteronuclear (Cs-Cs-Li and K-K-Rb) systems are described during a continuous deformation from three to one dimension. We find that the changes in binding energies between integer dimensional cases exhibit a universal behavior akin to that seen in avoided crossings or Zeldovich rearrangement.
We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared to the single-well case.
It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound-states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms [Phys. Rev. Lett. textbf{111}, 185301 (2013); Phys. Rev. Lett. textbf{111}, 185302 (2013)]. Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound-states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound-states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled and compare with the Luttinger-liquid theory.