Do you want to publish a course? Click here

Few-Body Bound States of Dipole-Dipole Interacting Rydberg Atoms

163   0   0.0 ( 0 )
 Added by Martin Kiffner
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to different fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.



rate research

Read More

We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techniques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realises a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian.
479 - C. Ates , A. Eisfeld , J. M. Rost 2007
We show that nuclear motion of Rydberg atoms can be induced by resonant dipole-dipole interactions that trigger the energy transfer between two energetically close Rydberg states. How and if the atoms move depends on their initial arrangement as well as on the initial electronic excitation. Using a mixed quantum/classical propagation scheme we obtain the trajectories and kinetic energies of atoms, initially arranged in a regular chain and prepared in excitonic eigenstates. The influence of off-diagonal disorder on the motion of the atoms is examined and it is shown that irregularity in the arrangement of the atoms can lead to an acceleration of the nuclear dynamics.
Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled Rb atoms in a magneto-optical trap were optically excited to 45d Rydberg states using a pulsed laser. A microwave pulse transferred a fraction of these Rydberg atoms to the 46p state. A second microwave pulse then drove atoms in the 45d state to the 46d state, and was used as a probe of interatomic interactions. The spectral width of this two-photon probe transition was found to depend on the presence of the 46p atoms, and is due to the resonant electric dipole-dipole interaction between 45d and 46p Rydberg atoms.
We have observed resonant energy transfer between cold Rydberg atoms in spatially separated cylinders. Resonant dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. We have measured the production of the 49p state as a function of separation of the cylinders (0 - 80 um) and the interaction time (0 - 25 us). In addition we measured the width of the electric field resonances. A full many-body quantum calculation reproduces the main features of the experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا