No Arabic abstract
Recent advances in artificial intelligence (AI) and machine learning have created a general perception that AI could be used to solve complex problems, and in some situations over-hyped as a tool that can be so easily used. Unfortunately, the barrier to realization of mass adoption of AI on various business domains is too high because most domain experts have no background in AI. Developing AI applications involves multiple phases, namely data preparation, application modeling, and product deployment. The effort of AI research has been spent mostly on new AI models (in the model training stage) to improve the performance of benchmark tasks such as image recognition. Many other factors such as usability, efficiency and security of AI have not been well addressed, and therefore form a barrier to democratizing AI. Further, for many real world applications such as healthcare and autonomous driving, learning via huge amounts of possibility exploration is not feasible since humans are involved. In many complex applications such as healthcare, subject matter experts (e.g. Clinicians) are the ones who appreciate the importance of features that affect health, and their knowledge together with existing knowledge bases are critical to the end results. In this paper, we take a new perspective on developing AI solutions, and present a solution for making AI usable. We hope that this resolution will enable all subject matter experts (eg. Clinicians) to exploit AI like data scientists.
Game AI competitions are important to foster research and development on Game AI and AI in general. These competitions supply different challenging problems that can be translated into other contexts, virtual or real. They provide frameworks and tools to facilitate the research on their core topics and provide means for comparing and sharing results. A competition is also a way to motivate new researchers to study these challenges. In this document, we present the Geometry Friends Game AI Competition. Geometry Friends is a two-player cooperative physics-based puzzle platformer computer game. The concept of the game is simple, though its solving has proven to be difficult. While the main and apparent focus of the game is cooperation, it also relies on other AI-related problems such as planning, plan execution, and motion control, all connected to situational awareness. All of these must be solved in real-time. In this paper, we discuss the competition and the challenges it brings, and present an overview of the current solutions.
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innovation. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.
The AI City Challenge was created to accelerate intelligent video analysis that helps make cities smarter and safer. Transportation is one of the largest segments that can benefit from actionable insights derived from data captured by sensors, where computer vision and deep learning have shown promise in achieving large-scale practical deployment. The 4th annual edition of the AI City Challenge has attracted 315 participating teams across 37 countries, who leveraged city-scale real traffic data and high-quality synthetic data to compete in four challenge tracks. Track 1 addressed video-based automatic vehicle counting, where the evaluation is conducted on both algorithmic effectiveness and computational efficiency. Track 2 addressed city-scale vehicle re-identification with augmented synthetic data to substantially increase the training set for the task. Track 3 addressed city-scale multi-target multi-camera vehicle tracking. Track 4 addressed traffic anomaly detection. The evaluation system shows two leader boards, in which a general leader board shows all submitted results, and a public leader board shows results limited to our contest participation rules, that teams are not allowed to use external data in their work. The public leader board shows results more close to real-world situations where annotated data are limited. Our results show promise that AI technology can enable smarter and safer transportation systems.
The ability to explain decisions made by AI systems is highly sought after, especially in domains where human lives are at stake such as medicine or autonomous vehicles. While it is often possible to approximate the input-output relations of deep neural networks with a few human-understandable rules, the discovery of the double descent phenomena suggests that such approximations do not accurately capture the mechanism by which deep neural networks work. Double descent indicates that deep neural networks typically operate by smoothly interpolating between data points rather than by extracting a few high level rules. As a result, neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate. To show how we might be able to trust AI despite these problems we introduce the concept of self-explaining AI. Self-explaining AIs are capable of providing a human-understandable explanation of each decision along with confidence levels for both the decision and explanation. For this approach to work, it is important that the explanation actually be related to the decision, ideally capturing the mechanism used to arrive at the explanation. Finally, we argue it is important that deep learning based systems include a warning light based on techniques from applicability domain analysis to warn the user if a model is asked to extrapolate outside its training distribution. For a video presentation of this talk see https://www.youtube.com/watch?v=Py7PVdcu7WY& .
Advances in artificial intelligence (AI) will transform modern life by reshaping transportation, health, science, finance, and the military. To adapt public policy, we need to better anticipate these advances. Here we report the results from a large survey of machine learning researchers on their beliefs about progress in AI. Researchers predict AI will outperform humans in many activities in the next ten years, such as translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by 2027), working in retail (by 2031), writing a bestselling book (by 2049), and working as a surgeon (by 2053). Researchers believe there is a 50% chance of AI outperforming humans in all tasks in 45 years and of automating all human jobs in 120 years, with Asian respondents expecting these dates much sooner than North Americans. These results will inform discussion amongst researchers and policymakers about anticipating and managing trends in AI.