Do you want to publish a course? Click here

Self-explaining AI as an alternative to interpretable AI

137   0   0.0 ( 0 )
 Added by Daniel Elton
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The ability to explain decisions made by AI systems is highly sought after, especially in domains where human lives are at stake such as medicine or autonomous vehicles. While it is often possible to approximate the input-output relations of deep neural networks with a few human-understandable rules, the discovery of the double descent phenomena suggests that such approximations do not accurately capture the mechanism by which deep neural networks work. Double descent indicates that deep neural networks typically operate by smoothly interpolating between data points rather than by extracting a few high level rules. As a result, neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate. To show how we might be able to trust AI despite these problems we introduce the concept of self-explaining AI. Self-explaining AIs are capable of providing a human-understandable explanation of each decision along with confidence levels for both the decision and explanation. For this approach to work, it is important that the explanation actually be related to the decision, ideally capturing the mechanism used to arrive at the explanation. Finally, we argue it is important that deep learning based systems include a warning light based on techniques from applicability domain analysis to warn the user if a model is asked to extrapolate outside its training distribution. For a video presentation of this talk see https://www.youtube.com/watch?v=Py7PVdcu7WY& .



rate research

Read More

To facilitate the widespread acceptance of AI systems guiding decision-making in real-world applications, it is key that solutions comprise trustworthy, integrated human-AI systems. Not only in safety-critical applications such as autonomous driving or medicine, but also in dynamic open world systems in industry and government it is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions. Another key requirement for deployment of AI at enterprise scale is to realize the importance of integrating human-centered design into AI systems such that humans are able to use systems effectively, understand results and output, and explain findings to oversight committees. While the focus of this symposium was on AI systems to improve data quality and technical robustness and safety, we welcomed submissions from broadly defined areas also discussing approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.
Advances in artificial intelligence (AI) will transform modern life by reshaping transportation, health, science, finance, and the military. To adapt public policy, we need to better anticipate these advances. Here we report the results from a large survey of machine learning researchers on their beliefs about progress in AI. Researchers predict AI will outperform humans in many activities in the next ten years, such as translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by 2027), working in retail (by 2031), writing a bestselling book (by 2049), and working as a surgeon (by 2053). Researchers believe there is a 50% chance of AI outperforming humans in all tasks in 45 years and of automating all human jobs in 120 years, with Asian respondents expecting these dates much sooner than North Americans. These results will inform discussion amongst researchers and policymakers about anticipating and managing trends in AI.
Data-driven approaches are becoming more common as problem-solving techniques in many areas of research and industry. In most cases, machine learning models are the key component of these solutions, but a solution involves multiple such models, along with significant levels of reasoning with the models output and input. Current technologies do not make such techniques easy to use for application experts who are not fluent in machine learning nor for machine learning experts who aim at testing ideas and models on real-world data in the context of the overall AI system. We review key efforts made by various AI communities to provide languages for high-level abstractions over learning and reasoning techniques needed for designing complex AI systems. We classify the existing frameworks based on the type of techniques and the data and knowledge representations they use, provide a comparative study of the way they address the challenges of programming real-world applications, and highlight some shortcomings and future directions.
This paper presents a design of a non-player character (AI) for promoting balancedness in use of body segments when engaging in full-body motion gaming. In our experiment, we settle a battle between the proposed AI and a player by using FightingICE, a fighting game platform for AI development. A middleware called UKI is used to allow the player to control the game by using body motion instead of the keyboard and mouse. During gameplay, the proposed AI analyze health states of the player; it determines its next action by predicting how each candidate action, recommended by a Monte-Carlo tree search algorithm, will induce the player to move, and how the players health tends to be affected. Our result demonstrates successful improvement in balancedness in use of body segments on 4 out of 5 subjects.
Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health information, and aim to reduce bias in that domain using AI. The AI algorithms under the hood of search engines and social media, many of which are based on recommender systems, have an outsized impact on the quality of medical and health information online. Therefore, embedding bias detection and reduction into these recommender systems serving up medical and health content online could have an outsized positive impact on patient outcomes and wellbeing. In this position paper, we offer the following contributions: (1) we propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism; (2) we define a new term, bisinformation, which is related to, but distinct from, misinformation, and encourage researchers to study it; (3) we propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society; and (4) we suggest several pillars and pose several open problems in order to seed inquiry in this new space. While part (3) of this work specifically focuses on the health domain, the fundamental computer science advances and contributions stemming from research efforts in bias reduction and Fairness via AI have broad implications in all areas of society.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا