Do you want to publish a course? Click here

Revealing the quantitative relation between simultaneous correlations in complementary bases and quantum steering for two-qubit Bell diagonal states

74   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present work is motivated by the question as to what aspect of correlation entailed by the two-qubit state serves as the appropriate quantitative resource for steering. To this end, considering Bell-diagonal states, suitable measures of simultaneous correlations in two and three complementary (mutually unbiased) bases are identified as the relevant resources for quantum steering. Quantitative relations between appropriate measures of quantum steering and the corresponding measures of simultaneous correlations in complementary bases are demonstrated which ensure that for two qubit steerable Bell-diagonal states, higher value of simultaneous correlations in mutually unbiased bases necessarily implies higher degree of quantum steering, both for two and three setting steering scenarios.



rate research

Read More

We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality.
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a general two-qubit entangled state. In this work, we investigate the relation between entanglement and Bell nonlocality by using lots of randomly generated two-qubit states, and give out a constraint inequality relation between the two quantum resources. For studying the upper or lower boundary of the inequality relation, we discover maximally (minimally) nonlocal entangled states, which maximize (minimize) the value of the Bell nonlocality for a given value of the entanglement. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on werner state. It is found that the special mixed states entanglement and Bell nonlocality are related to ones of a pure state transformed by the unitary operation performed on the Bell state.
Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exactly expressions of quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical to quantum decoherence.
Entanglement and steering are used to describe quantum inseparabilities. Steerable states form a strict subset of entangled states. A natural question arises concerning how much territory steerability occupies entanglement for a general two-qubit entangled state. In this work, we investigate the constraint relation between steerability and concurrence by using two kinds of evolutionary states and randomly generated two-qubit states. By combining the theoretical and numerical proofs, we obtain the upper and lower boundaries of steerability. And the lower boundary can be used as a sufficient criterion for steering detection. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on Werner-like state, and propose a sufficient steering criterion described by concurrence and purity.
According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is introduced to describe the required local resources to reconstruct a measurement assemblage for two-qubit states. We show that the quantity can be regarded as a quantification of steerability and be used to find out optimal LHS models. Finally we propose a method to generate unsteerable states, and construct some two-qubit states which are entangled but unsteerable under all projective measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا