According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is introduced to describe the required local resources to reconstruct a measurement assemblage for two-qubit states. We show that the quantity can be regarded as a quantification of steerability and be used to find out optimal LHS models. Finally we propose a method to generate unsteerable states, and construct some two-qubit states which are entangled but unsteerable under all projective measurements.
Einstein-Podolsky-Rosen (EPR) steering is the ability that an observer persuades a distant observer to share entanglement by making local measurements. Determining a quantum state is steerable or unsteerable remains an open problem. Here, we derive a new steering inequality with infinite measurements corresponding to an arbitrary two-qubit T state, from consideration of EPR steering inequalities with N projective measurement settings for each side. In fact, the steering inequality is also a sufficient criterion for guaranteering that the T state is unsteerable. Hence, the steering inequality can be viewed as a necessary and sufficient criterion to distinguish whether the T state is steerable or unsteerable. In order to reveal the fact that the set composed of steerable states is the strict subset of the set made up of entangled states, we prove theoretically that all separable T states can not violate the steering inequality. Moreover, we put forward a method to estimate the maximum violation from concurrence for arbitrary two-qubit T states, which indicates that the T state is steerable if its concurrence exceeds 1/4.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship with that for X states. Thereby in some cases analytical expressions of classical correlations and quantum discord can be obtained.
We identify the families of states that maximise some recently proposed quantifiers of Einstein-Podolsky-Rosen (EPR) steering and the volume of the Quantum Steering Ellipsoid (QSE). The optimal measurements which maximise genuine EPR steering measures are discussed and we develop a novel way to find them using the QSE. We thus explore the links between genuine EPR steering and the QSE and introduce states that can be the most useful for one-sided device-independent quantum cryptography for a given amount of noise.
A conceptually simpler proof of the separability criterion for two-qubit systems, which is referred to as Hefei inequality in literature, is presented. This inequality gives a necessary and sufficient separability criterion for any mixed two-qubit system unlike the Bell-CHSH inequality that cannot test the mixed-states such as the Werner state when regarded as a separability criterion. The original derivation of this inequality emphasized the uncertainty relation of complementary observables, but we show that the uncertainty relation does not play any role in the actual derivation and the Peres-Hodrodecki condition is solely responsible for the inequality. Our derivation, which contains technically novel aspects such as an analogy to the Dirac equation, sheds light on this inequality and on the fundamental issue to what extent the uncertainty relation can provide a test of entanglement. This separability criterion is illustrated for an exact treatment of the Werner state.
Quantum steering describes the ability of one observer to nonlocally affect the other observers state through local measurements, which represents a new form of quantum nonlocal correlation and has potential applications in quantum information and quantum communication. In this paper, we propose a computable steering criterion that is applicable to bipartite quantum systems of arbitrary dimensions. The criterion can be used to verify a wide range of steerable states directly from a given density matrix without constructing measurement settings. Compared with the existing steering criteria, it is readily computable and testable in experiment, which can also be used to verify entanglement as all steerable quantum states are entangled.