Do you want to publish a course? Click here

Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

103   0   0.0 ( 0 )
 Added by Sungmin Woo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.



rate research

Read More

We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, and several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0 K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the epitaxial films are magnetically isotropic in the plane. Measurements of the X-ray magnetic circular dichroism of the films allowed us to determine element specific magnetic moments. Finally we have measured the spin polarization at the surface region by spin-resolved near-threshold photoemission and found it strongly reduced in contrast to the expected bulk value of 100%. Possible reasons for the reduced magnetization are discussed.
The functional properties of devices based on perovskite oxides depend strongly on the growth modes that dramatically affect surface morphology and microstructure of the hetero-structured thin films. To achieve atomically flat surface morphology, which is usually a necessity for the high quality devices, understanding of the growth mechanism of heteroepitaxial thin film is indispensable. In this study, we explore heteroepitaxial growth kinetics of the SrRuO3 using intermittent growth scheme of pulsed laser epitaxy and ex-situ atomic force microscopy. Two significant variations in surface roughness during deposition of the first unit cell layer were observed from atomic force microscopy indicating the possible formation of the half unit cell of the SrRuO3 before the complete formation of the first unit cell. In addition, layer-by-layer growth mode dominated during the first two unit cell layer deposition of the SrRuO3 thin film. Our observation provides underlying growth mechanism of the heteroepitaxial SrRuO3 thin film on the SrTiO3 substrate during the initial growth of the thin film.
A suite measurements of the electrical, thermal, and vibrational properties are conducted on palladium sulfide (PdS) in order to investigate its thermoelectric performance. The tetragonal structure with the space group $P$42/$m$ for PdS is determined from X-ray diffraction measurement. The unique temperature dependence of mobility suggests that acoustic phonons and ion impurity scattering are two dominant scattering mechanisms within the compound. The obtained power factor of $27$ $mu$Wcm$^{-1}$K$^{-2}$ at 800 K is the largest value in the remaining transition-metal sulfides studied so far. The maximum value of the dimensionless figure of merit is 0.33 at 800 K. The observed phonon softening with temperature indicates that the reduction of the lattice thermal conductivity is mainly controlled by the enhanced lattice anharmonicity. These results indicate that the binary bulk PdS has promising potential to have good thermoelectrical performance.
Epitaxial NbO2 (110) films, 20 nm thick, were grown by pulsed laser deposition on Al2O3 (0001) substrates. The Ar/O2 total pressure during growth was varied to demonstrate the gradual transformation between NbO2 and Nb2O5 phases, which was verified using x-ray diffraction, x-ray photoelectron spectroscopy, and optical absorption measurements. Electric resistance threshold switching characteristics were studied in a lateral geometry using interdigitated Pt top electrodes in order to preserve the epitaxial crystalline quality of the films. Volatile and reversible transitions between high and low resistance states were observed in epitaxial NbO2 films, while irreversible transitions were found in case of Nb2O5 phase. Electric field pulsed current measurements confirmed thermally-induced threshold switching.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا