Do you want to publish a course? Click here

Structure evolution of hcp/ccp metal oxide interfaces in solid-state reactions

100   0   0.0 ( 0 )
 Added by Chen Li
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl2O4 layers have been grown between Al2O3 and MgO, and the atomic structure of Al2O3/MgAl2O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (hcp) stacking in Al2O3 to cubic close-packed (ccp) stacking in MgAl2O4. Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2O3/MgAl2O4 interface into Al2O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent {Sigma}3 grain boundaries form. The newly grown MgAl2O4 grains compete with each other, leading to a growth-selection and successive coarsening of the MgAl2O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar hcp/ccp transition.



rate research

Read More

Electroluminescence (EL) spectra from hybrid charge transfer excitons at metal oxide/organic type-II heterojunctions exhibit pronounced bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for both electric field-induced effects as well as filling of trap states at the oxide surface have been put forward. Here, we combine the results from EL and photovoltaic measurements to eliminate the disguising effects of the series resistance. For SnOx combined with the conjugated polymer MeLPPP, we find a one-to-one correspondence between the blueshift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data is resembled best by a model considering the combination an exponential density of states with a doped semiconductor.
Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.
Recently amorphous oxide semiconductors (AOS) have gained commercial interest due to their low-temperature processability, high mobility and areal uniformity for display backplanes and other large area applications. A multi-cation amorphous oxide (a-IGZO) has been researched extensively and is now being used in commercial applications. It is proposed in the literature that overlapping In-5s orbitals form the conduction path and the carrier mobility is limited due to the presence of multiple cations which create a potential barrier for the electronic transport in a-IGZO semiconductors. A multi-anion approach towards amorphous semiconductors has been suggested to overcome this limitation and has been shown to achieve hall mobilities up to an order of magnitude higher compared to multi-cation amorphous semiconductors. In the present work, we compare the electronic structure and electronic transport in a multi-cation amorphous semiconductor, a-IGZO and a multi-anion amorphous semiconductor, a-ZnON using computational methods. Our results show that in a-IGZO, the carrier transport path is through the overlap of outer s-orbitals of mixed cations and in a-ZnON, the transport path is formed by the overlap of Zn-4s orbitals, which is the only type of metal cation present. We also show that for multi-component ionic amorphous semiconductors, electron transport can be explained in terms of orbital overlap integral which can be calculated from structural information and has a direct correlation with the carrier effective mass which is calculated using computationally expensive first principle DFT methods.
Chalcogenides (Q = S, Se, Te), one of the most important family of materials in solid-state chemistry, differ from oxides by their ability to form covalently-bonded (Qn)2- oligomers. Each chalcogen atom within such entity fulfills the octet rule by sharing electrons with other chalcogen atoms but some antibonding levels are vacant. This makes these oligomers particularly suited for redox reactions in solid state, namely towards elemental metals with a low redox potential that may be oxidized. We recently used this strategy to design, at low temperature and in an orientated manner, materials with 2D infinite layers through the topochemical insertion of copper into preformed precursors containing (S2)2- and/or (Se2)2- dimers (i.e. La2O2S2, Ba2F2S2 and LaSe2). Herein we extend the validity of the concept to the redox activity of (S2)2- and (S3)2- oligomers towards 3d transition metal elements (Cu, Ni, Fe) and highlight the strong relationship between the structures of the precursors, BaS2 and BaS3, and the products, BaCu2S2, BaCu4S3, BaNiS2 and BaFe2S3. Clearly, beyond the natural interest for the chemical reactivity of oligomers to generate compounds, this soft chemistry route may conduct to the rational conception of materials with a predicted crystal structure.
118 - S. Tsui 2004
We investigate the polarity-dependent field-induced resistive switching phenomenon driven by electric pulses in perovskite oxides. Our data show that the switching is a common occurrence restricted to an interfacial layer between a deposited metal electrode and the oxide. We determine through impedance spectroscopy that the interfacial layer is no thicker than 10 nm and that the switch is accompanied by a small capacitance increase associated with charge accumulation. Based on interfacial I-V characterization and measurement of the temperature dependence of the resistance, we propose that a field-created crystalline defect mechanism, which is controllable for devices, drives the switch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا