Do you want to publish a course? Click here

Modeling evolution in a Long Time Evolution Experiment with E. Coli

65   0   0.0 ( 0 )
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

Taking into account an evolutionary model of mutations in term of Levy Fights that was previously constructed, we designed an algorithm to reproduce the evolutionary dynamics of the Long-Term Evolution Experiment (LTEE) with E. Coli bacteria. The algorithm enables us to simulate mutations under natural selection conditions. The results of simulations on competition of clones, mean fitness, etc., are compared with experimental data. We attained to reproduce the behavior of the mean fitness of the bacteria cultures, get our own interpretations and more tuned descriptions of some phenomena taking part within the experiment, such as fixation and drift processes, clonal interference and epistasis.



rate research

Read More

We revisit the model by Wiser, Ribeck, and Lenski (Science textbf{342} (2013), 1364--1367), which describes how the mean fitness increases over time due to beneficial mutations in Lenskis long-term evolution experiment. We develop the model further both conceptually and mathematically. Conceptually, we describe the experiment with the help of a Cannings model with mutation and selection, where the latter includes diminishing returns epistasis. The analysis sheds light on the growth dynamics within every single day and reveals a runtime effect, that is, the shortening of the daily growth period with increasing fitness; and it allows to clarify the contribution of epistasis to the mean fitness curve. Mathematically, we explain rigorous results in terms of a law of large numbers (in the limit of infinite population size and for a certain asymptotic parameter regime), and present approximations based on heuristics and supported by simulations for finite populations.
The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous population of stem cells (SCs) and their associated progenitors. The fate of a malignant mutation is determined not only by overall stem cell and differentiated cell growth rates but also differentiation and dedifferentiation rates. We investigate the effect of such a complex population structure on the evolution of malignant mutations. We derive exact analytic results for the fixation probability of a mutant arising in each of the subpopulations. The analytic results are in almost perfect agreement with the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant cell versus the wild type population is given in the present study. We also show that microenvironment-induced plasticity in invading mutants leads to more aggressive mutants with higher fixation probability. Our model predicts that decreasing polarity between stem and differentiated cells turnover would raise the survivability of non-plastic mutants; while it would suppress the development of malignancy for plastic mutants. We discuss our model in the context of colorectal/intestinal cancer (at the epithelium). This novel mathematical framework can be applied more generally to a variety of problems concerning selection in heterogeneous populations, in other contexts such as population genetics, and ecology.
Biological systems are typically highly open, non-equilibrium systems that are very challenging to understand from a statistical mechanics perspective. While statistical treatments of evolutionary biological systems have a long and rich history, examination of the time-dependent non-equilibrium dynamics has been less studied. In this paper we first derive a generalized master equation in the genotype space for diploid organisms incorporating the processes of selection, mutation, recombination, and reproduction. The master equation is defined in terms of continuous time and can handle an arbitrary number of gene loci and alleles, and can be defined in terms of an absolute population or probabilities. We examine and analytically solve several prototypical cases which illustrate the interplay of the various processes and discuss the timescales of their evolution. The entropy production during the evolution towards steady state is calculated and we find that it agrees with predictions from non-equilibrium statistical mechanics where it is large when the population distribution evolves towards a more viable genotype. The stability of the non-equilibrium steady state is confirmed using the Glansdorff-Prigogine criterion.
209 - Nuno Crokidakis 2020
The world evolution of the Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2 or simply COVID-19) led the World Health Organization to declare it a pandemic. The disease appeared in China in December 2019, and it has spread fast around the world, specially in european countries like Italy and Spain. The first reported case in Brazil was recorded in February 26, and after that the number of cases growed fast. In order to slow down the initial growth of the disease through the country, confirmed positive cases were isolated to not transmit the disease. To better understand the early evolution of COVID-19 in Brazil, we apply a Susceptible-Infectious-Quarantined-Recovered (SIQR) model to the analysis of data from the Brazilian Department of Health, obtained from February 26, 2020 through March 25, 2020. Based on analyical and numerical results, as well on the data, the basic reproduction number is estimated to $R_{0}=5.25$. In addition, we estimate that the ratio unidentified infectious individuals and confirmed cases at the beginning of the epidemic is about $10$, in agreement with previous studies. We also estimated the epidemic doubling time to be $2.72$ days.
The possibility of complicated dynamic behaviour driven by non-linear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of survival of the fittest is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for the evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are epistatic interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. Our analysis may also be the first systematic study of the occurrence of chaos in multidimensional and generally dissipative systems as a function of the dimensionality of phase space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا