Do you want to publish a course? Click here

Modelling and simulating Lenskis long-term evolution experiment

231   0   0.0 ( 0 )
 Added by Ellen Baake
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

We revisit the model by Wiser, Ribeck, and Lenski (Science textbf{342} (2013), 1364--1367), which describes how the mean fitness increases over time due to beneficial mutations in Lenskis long-term evolution experiment. We develop the model further both conceptually and mathematically. Conceptually, we describe the experiment with the help of a Cannings model with mutation and selection, where the latter includes diminishing returns epistasis. The analysis sheds light on the growth dynamics within every single day and reveals a runtime effect, that is, the shortening of the daily growth period with increasing fitness; and it allows to clarify the contribution of epistasis to the mean fitness curve. Mathematically, we explain rigorous results in terms of a law of large numbers (in the limit of infinite population size and for a certain asymptotic parameter regime), and present approximations based on heuristics and supported by simulations for finite populations.



rate research

Read More

Taking into account an evolutionary model of mutations in term of Levy Fights that was previously constructed, we designed an algorithm to reproduce the evolutionary dynamics of the Long-Term Evolution Experiment (LTEE) with E. Coli bacteria. The algorithm enables us to simulate mutations under natural selection conditions. The results of simulations on competition of clones, mean fitness, etc., are compared with experimental data. We attained to reproduce the behavior of the mean fitness of the bacteria cultures, get our own interpretations and more tuned descriptions of some phenomena taking part within the experiment, such as fixation and drift processes, clonal interference and epistasis.
We present the latest improvements in the Center for Radiative Shock Hydrodynamics (CRASH) code, a parallel block-adaptive-mesh Eulerian code for simulating high-energy-density plasmas. The implementation can solve for radiation models with either a gray or a multigroup method in the flux-limited-diffusion approximation. The electrons and ions are allowed to be out of temperature equilibrium and flux-limited electron thermal heat conduction is included. We have recently implemented a CRASH laser package with 3-D ray tracing, resulting in improved energy deposition evaluation. New, more accurate opacity models are available which significantly improve radiation transport in materials like xenon. In addition, the HYPRE preconditioner has been added to improve the radiation implicit solver. With this updated version of the CRASH code we study radiative shock tube problems. In our set-up, a 1 ns, 3.8 kJ laser pulse irradiates a 20 micron beryllium disk, driving a shock into a xenon-filled plastic tube. The electrons emit radiation behind the shock. This radiation from the shocked xenon preheats the unshocked xenon. Photons traveling ahead of the shock will also interact with the plastic tube, heat it, and in turn this can drive another shock off the wall into the xenon. We are now able to simulate the long term evolution of radiative shocks.
The evolutionary process has been modelled in many ways using both stochastic and deterministic models. We develop an algebraic model of evolution in a population of asexually reproducing organisms in which we represent a stochastic walk in phenotype space, constrained to the edges of an underlying graph representing the genotype, with a time-homogeneous Markov Chain. We show its equivalence to a more standard, explicit stochastic model and show the algebraic models superiority in computational efficiency. Because of this increase in efficiency, we offer the ability to simulate the evolution of much larger populations in more realistic genotype spaces. Further, we show how the algebraic properties of the Markov Chain model can give insight into the evolutionary process and allow for analysis using familiar linear algebraic methods.
Noise dominates every aspect of near-term quantum computers, rendering it exceedingly difficult to carry out even small computations. In this paper we are concerned with the modelling of noise in NISQ computers. We focus on three error groups that represent the main sources of noise during a computation and present quantum channels that model each source. We engineer a noise model that combines all three noise channels and simulates the evolution of the quantum computer using its calibrated error rates. We run various experiments of our model, showcasing its behaviour compared to other noise models and an IBM quantum computer. We find that our model provides a better approximation of the quantum computers behaviour than the other models. Following this, we use a genetic algorithm to optimize the parameters used by our noise model, bringing the behaviour of the model even closer to the quantum computer. Finally, a comparison between the pre- and post-optimization parameters reveals that, according to our mode, certain operations can be more or less erroneous than the hardware-calibrated parameters show.
149 - Adrian L. Melott 2008
Time series analysis of fossil biodiversity of marine invertebrates in the Paleobiology Database (PBDB) shows a significant periodicity at approximately 63 My, in agreement with previous analyses based on the Sepkoski database. I discuss how this result did not appear in a previous analysis of the PBDB. The existence of the 63 My periodicity, despite very different treatment of systematic error in both PBDB and Sepkoski databases strongly argues for consideration of its reality in the fossil record. Cross-spectral analysis of the two datasets finds that a 62 My periodicity coincides in phase by 1.6 My, equivalent to better than the errors in either measurement. Consequently, the two data sets not only contain the same strong periodicity, but its peaks and valleys closely correspond in time. Two other spectral peaks appear in the PBDB analysis, but appear to be artifacts associated with detrending and with the increased interval length. Sampling-standardization procedures implemented by the PBDB collaboration suggest that the signal is not an artifact of sampling bias. Further work should focus on finding the cause of the 62 My periodicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا