Do you want to publish a course? Click here

Motion Segmentation by Exploiting Complementary Geometric Models

267   0   0.0 ( 0 )
 Added by Xun Xu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Many real-world sequences cannot be conveniently categorized as general or degenerate; in such cases, imposing a false dichotomy in using the fundamental matrix or homography model for motion segmentation would lead to difficulty. Even when we are confronted with a general scene-motion, the fundamental matrix approach as a model for motion segmentation still suffers from several defects, which we discuss in this paper. The full potential of the fundamental matrix approach could only be realized if we judiciously harness information from the simpler homography model. From these considerations, we propose a multi-view spectral clustering framework that synergistically combines multiple models together. We show that the performance can be substantially improved in this way. We perform extensive testing on existing motion segmentation datasets, achieving state-of-the-art performance on all of them; we also put forth a more realistic and challenging dataset adapted from the KITTI benchmark, containing real-world effects such as strong perspectives and strong forward translations not seen in the traditional datasets.



rate research

Read More

Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels has been greatly advanced by exploiting the outputs of Class Activation Map (CAM) to generate the pseudo labels for semantic segmentation. However, CAM merely discovers seeds from a small number of regions, which may be insufficient to serve as pseudo masks for semantic segmentation. In this paper, we formulate the expansion of object regions in CAM as an increase in information. From the perspective of information theory, we propose a novel Complementary Patch (CP) Representation and prove that the information of the sum of the CAMs by a pair of input images with complementary hidden (patched) parts, namely CP Pair, is greater than or equal to the information of the baseline CAM. Therefore, a CAM with more information related to object seeds can be obtained by narrowing down the gap between the sum of CAMs generated by the CP Pair and the original CAM. We propose a CP Network (CPN) implemented by a triplet network and three regularization functions. To further improve the quality of the CAMs, we propose a Pixel-Region Correlation Module (PRCM) to augment the contextual information by using object-region relations between the feature maps and the CAMs. Experimental results on the PASCAL VOC 2012 datasets show that our proposed method achieves a new state-of-the-art in WSSS, validating the effectiveness of our CP Representation and CPN.
Many real-world video sequences cannot be conveniently categorized as general or degenerate; in such cases, imposing a false dichotomy in using the fundamental matrix or homography model for motion segmentation on video sequences would lead to difficulty. Even when we are confronted with a general scene-motion, the fundamental matrix approach as a model for motion segmentation still suffers from several defects, which we discuss in this paper. The full potential of the fundamental matrix approach could only be realized if we judiciously harness information from the simpler homography model. From these considerations, we propose a multi-model spectral clustering framework that synergistically combines multiple models (homography and fundamental matrix) together. We show that the performance can be substantially improved in this way. For general motion segmentation tasks, the number of independently moving objects is often unknown a priori and needs to be estimated from the observations. This is referred to as model selection and it is essentially still an open research problem. In this work, we propose a set of model selection criteria balancing data fidelity and model complexity. We perform extensive testing on existing motion segmentation datasets with both segmentation and model selection tasks, achieving state-of-the-art performance on all of them; we also put forth a more realistic and challenging dataset adapted from the KITTI benchmark, containing real-world effects such as strong perspectives and strong forward translations not seen in the traditional datasets.
We propose a self-supervised spatio-temporal matching method coined Motion-Aware Mask Propagation (MAMP) for semi-supervised video object segmentation. During training, MAMP leverages the frame reconstruction task to train the model without the need for annotations. During inference, MAMP extracts high-resolution features from each frame to build a memory bank from the features as well as the predicted masks of selected past frames. MAMP then propagates the masks from the memory bank to subsequent frames according to our motion-aware spatio-temporal matching module, also proposed in this paper. Evaluation on DAVIS-2017 and YouTube-VOS datasets show that MAMP achieves state-of-the-art performance with stronger generalization ability compared to existing self-supervised methods, i.e. 4.9% higher mean $mathcal{J}&mathcal{F}$ on DAVIS-2017 and 4.85% higher mean $mathcal{J}&mathcal{F}$ on the unseen categories of YouTube-VOS than the nearest competitor. Moreover, MAMP performs on par with many supervised video object segmentation methods. Our code is available at: url{https://github.com/bo-miao/MAMP}.
90 - Jia Li , Junjie Wu , Anlin Zheng 2018
Segmenting primary objects in a video is an important yet challenging problem in computer vision, as it exhibits various levels of foreground/background ambiguities. To reduce such ambiguities, we propose a novel formulation via exploiting foreground and background context as well as their complementary constraint. Under this formulation, a unified objective function is further defined to encode each cue. For implementation, we design a Complementary Segmentation Network (CSNet) with two separate branches, which can simultaneously encode the foreground and background information along with joint spatial constraints. The CSNet is trained on massive images with manually annotated salient objects in an end-to-end manner. By applying CSNet on each video frame, the spatial foreground and background maps can be initialized. To enforce temporal consistency effectively and efficiently, we divide each frame into superpixels and construct neighborhood reversible flow that reflects the most reliable temporal correspondences between superpixels in far-away frames. With such flow, the initialized foregroundness and backgroundness can be propagated along the temporal dimension so that primary video objects gradually pop-out and distractors are well suppressed. Extensive experimental results on three video datasets show that the proposed approach achieves impressive performance in comparisons with 18 state-of-the-art models.
51 - Fan Yang , Guosheng Lin 2021
Garment transfer shows great potential in realistic applications with the goal of transfering outfits across different people images. However, garment transfer between images with heavy misalignments or severe occlusions still remains as a challenge. In this work, we propose Complementary Transfering Network (CT-Net) to adaptively model different levels of geometric changes and transfer outfits between different people. In specific, CT-Net consists of three modules: 1) A complementary warping module first estimates two complementary warpings to transfer the desired clothes in different granularities. 2) A layout prediction module is proposed to predict the target layout, which guides the preservation or generation of the body parts in the synthesized images. 3) A dynamic fusion module adaptively combines the advantages of the complementary warpings to render the garment transfer results. Extensive experiments conducted on DeepFashion dataset demonstrate that our network synthesizes high-quality garment transfer images and significantly outperforms the state-of-art methods both qualitatively and quantitatively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا