Do you want to publish a course? Click here

Some new bounds on LCD codes over finite fields

302   0   0.0 ( 0 )
 Added by Binbin Pang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.



rate research

Read More

131 - Xiaolei Fang , Jinquan Luo 2019
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bigger than $frac{q}{2}+1$. Comparing to previous known constructions, the lengths of codes in our constructions are more flexible.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been reported. For odd prime power $q$ with $q$ square, the total number of lengths for MDS self-dual codes over $mathbb{F}_q$ presented in this paper is much more than those in all the previous results.
367 - Binbin Pang , Shixin Zhu , Ping Li 2018
Professor Cunsheng Ding gave cyclotomic constructions of cyclic codes with length being the product of two primes. In this paper, we study the cyclic codes of length $n=2^e$ and dimension $k=2^{e-1}$. Clearly, Dings construction is not hold in this place. We describe two new types of generalized cyclotomy of order two, which are different from Dings. Furthermore, we study two classes of cyclic codes of length $n$ and dimension $k$. We get the enumeration of these cyclic codes. Whats more, all of the codes from our construction are among the best cyclic codes. Furthermore, we study the hull of cyclic codes of length $n$ over $mathbb{F}_q$. We obtain the range of $ell=dim({rm Hull}(C))$. We construct and enumerate cyclic codes of length $n$ having hull of given dimension.
In this paper, we give a new method for constructing LCD codes. We employ group rings and a well known map that sends group ring elements to a subring of the $n times n$ matrices to obtain LCD codes. Our construction method guarantees that our LCD codes are also group codes, namely, the codes are ideals in a group ring. We show that with a certain condition on the group ring element $v,$ one can construct non-trivial group LCD codes. Moreover, we also show that by adding more constraints on the group ring element $v,$ one can construct group LCD codes that are reversible. We present many examples of binary group LCD codes of which some are optimal and group reversible LCD codes with different parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا