Do you want to publish a course? Click here

New MDS Self-dual Codes over Finite Fields of Odd Characteristic

427   0   0.0 ( 0 )
 Added by Xiaolei Fang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been reported. For odd prime power $q$ with $q$ square, the total number of lengths for MDS self-dual codes over $mathbb{F}_q$ presented in this paper is much more than those in all the previous results.



rate research

Read More

131 - Xiaolei Fang , Jinquan Luo 2019
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bigger than $frac{q}{2}+1$. Comparing to previous known constructions, the lengths of codes in our constructions are more flexible.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual codes over. The main idea of our constructions is to choose suitable evaluation points such that the corresponding (extended) GRS codes are Euclidean self-dual (self-orthogonal). The evaluation sets are consists of two subsets which satisfy some certain conditions and the length of these codes can be expressed as a linear combination of two factors of q-1. Four families of MDS self-dual codes, two families of MDS self-orthogonal codes and two families of MDS almost self-dual codes are obtained and they have new parameters.
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{1}{8}cdot q$ new MDS Euclidean (almost) self-dual codes over $F_q$ can be produced. Moreover, we can construct about $frac{1}{4}cdot q$ new MDS Euclidean self-orthogonal codes with different even lengths $n$ with dimension $frac{n}{2}-1$.
Systematic constructions of MDS self-dual codes is widely concerned. In this paper, we consider the constructions of MDS Euclidean self-dual codes from short length. Indeed, the exact constructions of MDS Euclidean self-dual codes from short length ($n=3,4,5,6$) are given. In general, we construct more new of $q$-ary MDS Euclidean self-dual codes from MDS self-dual codes of known length via generalized Reed-Solomon (GRS for short) codes and extended GRS codes.
Self-dual codes over $Z_2timesZ_4$ are subgroups of $Z_2^alpha timesZ_4^beta$ that are equal to their orthogonal under an inner-product that relates to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values $alpha,beta$ such that there exist a code $Csubseteq Z_2^alpha timesZ_4^beta$ are established. Moreover, the construction of a $add$-linear code for each type and possible pair $(alpha,beta)$ is given. Finally, the standard techniques of invariant theory are applied to describe the weight enumerators for each type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا