Do you want to publish a course? Click here

Group LCD and Group Reversible LCD Codes

66   0   0.0 ( 0 )
 Added by Adrian Korban
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we give a new method for constructing LCD codes. We employ group rings and a well known map that sends group ring elements to a subring of the $n times n$ matrices to obtain LCD codes. Our construction method guarantees that our LCD codes are also group codes, namely, the codes are ideals in a group ring. We show that with a certain condition on the group ring element $v,$ one can construct non-trivial group LCD codes. Moreover, we also show that by adding more constraints on the group ring element $v,$ one can construct group LCD codes that are reversible. We present many examples of binary group LCD codes of which some are optimal and group reversible LCD codes with different parameters.



rate research

Read More

107 - Hongwei Liu , Shengwei Liu 2020
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes. Twisted Reed-Solomon codes can be applied in cryptography which prefer the codes with large minimum distance. MDS codes can be constructed from twisted Reed-Solomon codes, and most of them are not equivalent to Reed-Solomon codes. In this paper, we first generalize twisted Reed-Solomon codes to generalized twisted Reed-Solomon codes, then we give some new explicit constructions of MDS (generalized) twisted Reed-Solomon codes. In some cases, our constructions can get MDS codes with the length longer than the constructions of previous works. Linear complementary dual (LCD) codes are linear codes that intersect with their duals trivially. LCD codes can be applied in cryptography. This application of LCD codes renewed the interest in the construction of LCD codes having a large minimum distance. We also provide new constructions of LCD MDS codes from generalized twisted Reed-Solomon codes.
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
Let $mathbb{F}_q$ be a finite field of order $q$, a prime power integer such that $q=et+1$ where $tgeq 1,egeq 2$ are integers. In this paper, we study cyclic codes of length $n$ over a non-chain ring $R_{e,q}=mathbb{F}_q[u]/langle u^e-1rangle$. We define a Gray map $varphi$ and obtain many { maximum-distance-separable} (MDS) and optimal $mathbb{F}_q$-linear codes from the Gray images of cyclic codes. Under certain conditions we determine { linear complementary dual} (LCD) codes of length $n$ when $gcd(n,q) eq 1$ and $gcd(n,q)= 1$, respectively. It is proved that { a} cyclic code $mathcal{C}$ of length $n$ is an LCD code if and only if its Gray image $varphi(mathcal{C})$ is an LCD code of length $4n$ over $mathbb{F}_q$. Among others, we present the conditions for existence of free and non-free LCD codes. Moreover, we obtain many optimal LCD codes as the Gray images of non-free LCD codes over $R_{e,q}$.
160 - A. Dyachkov , V. Rykov , C. Deppe 2014
We will discuss superimposed codes and non-adaptive group testing designs arising from the potentialities of compressed genotyping models in molecular biology. The given paper was motivated by the 30th anniversary of Dyachkov-Rykov recurrent upper bound on the rate of superimposed codes published in 1982. We were also inspired by recent results obtained for non-adaptive threshold group testing which develop the theory of superimposed codes
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا