Do you want to publish a course? Click here

The Role of Crystal Orientation in the Dissolution of UO$_2$ Thin Films

120   0   0.0 ( 0 )
 Added by Sophie Rennie
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Epitaxial thin films have been utilised to investigate the radiolytic dissolution of uranium dioxide interfaces. Thin films of UO$_2$ deposited on single crystal yttria stabilised zirconia substrates have been exposed to water in the presence of a high flux, monochromatic, synchrotron x-ray source. In particular, this technique was applied to induce dissolution of three UO$_2$ thin films, grown along the principle UO$_2$ crystallographic orientations: (001), (110) and (111). Dissolution of each film was induced for 9 accumulative corrosion periods, totalling 270s, after which XRR spectra were recorded to observe the change in morphology of the films as a function of exposure time. While the (001) and (110) oriented films were found to corrode almost linearly and at comparable rates, the (111) film was found to be significantly more corrosion resistant, with no loss of UO$_2$ material being observed after the initial 90s corrosion period. These results distinctly show the effect of crystallographic orientation on the rate of x-ray induced UO$_2$ dissolution. This result may have important consequences for theoretical dissolution models, as it is evident that orientation dependence must be taken into consideration to obtain accurate predictions of the dissolution behaviour of UO$_2$.



rate research

Read More

We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO$_2$. We have irradiated thin ($sim$ 300 nm) epitaxial films of UO$_2$ with 2.1 MeV He$^{2+}$ ions to 0.15 dpa and a lattice swelling of $Delta$a/a $sim$ 0.6 %, and then used grazing-incidence inelastic X-ray scattering to measure the phonon spectrum. We succeeded to observe the acoustic modes, both transverse and longitudinal, across the Brillouin zone. The phonon energies, in both the pristine and irradiated samples, are unchanged from those observed in bulk material. On the other hand, the phonon linewidths (inversely proportional to the phonon lifetimes), show a significant broadening when comparing the pristine and irradiated samples. This effect is shown to increase with phonon energy across the Brillouin zone. The decreases in the phonon lifetimes of the acoustic modes are roughly consistent with a 50 % reduction in the thermal conductivity.
AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thin films. By characterizing the structural and electronic properties of films grown along (001) and (111) directions, the influence of growth orientation has been studied. Despite distinctly different growth modes observed during deposition, the comprehensive characterization reveals no measurable disorder in the cation distribution nor multivalency issue for Cr ions in either orientation. Contrary to a naive expectation, the (111) stabilized films exhibit a smoother surface and a higher degree of crystallinity than (001)-oriented films. The preference in growth orientation is explained within the framework of heteroepitaxial stabilization in connection to a significantly lower (111) surface energy. These findings open broad opportunities in the fabrication of 2D kagome-triangular heterostructures with emergent magnetic behavior inaccessible in bulk crystals.
A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca$_2$MnO$_4$ Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr$_2$TiO$_4$ substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship ($OR$) for each substrate-film grain pair. Two preferred epitaxial $ORs$ accounted for more than 90 % of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell $OR$ ([100][001]$_{film}$ $parallel$ [100][001]$_{substrate}$, or $OR1$) accounted for approximately 30 % of each film. The $OR$ that accounted for 60 % of each film ([100][001]$_{film}$ $parallel$ [100][010]$_{substrate}$, or $OR2$) corresponds to a rotation from $OR1$ by 90$^{circ}$ about the a-axis. $OR2$ is strongly favored for substrate orientations in the center of the stereographic triangle, and $OR1$ is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While $OR1$ should be lower in energy, the majority observation of $OR2$ implies kinetic hindrances decrease the frequency of $OR1$. Persistent grain over grain growth and the absence of variations of the $OR$ frequencies with thickness implies that the growth competition is finished within the first few si{ anometer}, and local epitaxy persists thereafter during growth.
148 - E. Haltz , R. Weil , J. Sampaio 2018
Ferrimagnetic TbFe or TbFeCo amorphous alloy thin films have been grown by co-evaporation in ultra-high vacuum. They exhibit an out-of-plane magnetic anisotropy up to their Curie temperature with a nucleation and propagation reversal mechanism suitable for current induced domain wall motion. Rutherford back scattering experiments confirmed a fine control of the Tb depth-integrated composition within the evaporation process. However, a large set of experimental techniques were used to evidence an interface related contribution in such thin films as compared to much thicker samples. In particular, scanning transmission electron microscopy experiments evidence a depth dependent composition and perturbed top and bottom interfaces with preferential oxidation and diffusion of terbium. Despite of that, amorphous and homogeneous alloy film remains in a bulk-like part. The composition of that bulk-like part of the magnetic layer, labeled as effective composition, is biased when compared with the depth-integrated composition. The magnetic properties of the film are mostly dictated by this effective composition, which we show changes with different top and bottom interfaces.
Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) technique. As the orientation of the Bi-YIG film changes from (100) to (111), the lattice constant is enhanced from 12.384 {AA} to 12.401 {AA} due to orientation dependent distribution of Bi3+ ions at dodecahedral sites in the lattice cell. Atomic force microscopy (AFM) images show smooth film surfaces with roughness 0.308 nm in Bi-YIG (111). The change in substrate orientation leads to the modification of Gilbert damping which, in turn, gives rise to the enhancement of ferromagnetic resonance (FMR) line width. The best values of Gilbert damping are found to be (0.54)*10-4, for YIG (100) and (6.27)*10-4, for Bi-YIG (111) oriented films. Angle variation measurements of the Hr are also performed, that shows a four-fold symmetry for the resonance field in the (100) grown film. In addition, the value of effective magnetization (4{pi}Meff) and extrinsic linewidth ({Delta}H0) are observed to be dependent on substrate orientation. Hence PLD growth can assist single-crystalline YIG and BYG films with a perfect interface that can be used for spintronics and related device applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا