Do you want to publish a course? Click here

Singular Value Decomposition Approximation via Kronecker Summations for Imaging Applications

65   0   0.0 ( 0 )
 Added by Clarissa Garvey
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we propose an approach to approximate a truncated singular value decomposition of a large structured matrix. By first decomposing the matrix into a sum of Kronecker products, our approach can be used to approximate a large number of singular values and vectors more efficiently than other well known schemes, such as randomized matrix algorithms or iterative algorithms based on Golub-Kahan bidiagonalization. We provide theoretical results and numerical experiments to demonstrate the accuracy of our approximation and show how the approximation can be used to solve large scale ill-posed inverse problems, either as an approximate filtering method, or as a preconditioner to accelerate iterative algorithms.



rate research

Read More

Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image processing and recognition problems, only a small number of dominant SVD triplets are selected, while in some applications such as quaternion total least squares problem, small SVD triplets (small singular values and associated singular vectors) and numerical rank with respect to a small threshold are required. In this paper, we propose a randomized quaternion SVD (verbrandsvdQ) method to compute a small number of SVD triplets of a large-scale quaternion matrix. Theoretical results are given about approximation errors and the corresponding algorithm adapts to the low-rank matrix approximation problem. When the restricted rank increases, it might lead to information loss of small SVD triplets. The blocked quaternion randomized SVD algorithm is then developed when the numerical rank and information about small singular values are required. For color face recognition problems, numerical results show good performance of the developed quaternion randomized SVD method for low-rank approximation of a large-scale quaternion matrix. The blocked randomized SVD algorithm is also shown to be more robust than unblocked method through several experiments, and approximation errors from the blocked scheme are very close to the optimal error obtained by truncating a full SVD.
The singular value decomposition (SVD) of large-scale matrices is a key tool in data analytics and scientific computing. The rapid growth in the size of matrices further increases the need for developing efficient large-scale SVD algorithms. Randomized SVD based on one-time sketching has been studied, and its potential has been demonstrated for computing a low-rank SVD. Instead of exploring different single random sketching techniques, we propose a Monte Carlo type integrated SVD algorithm based on multiple random sketches. The proposed integration algorithm takes multiple random sketches and then integrates the results obtained from the multiple sketched subspaces. So that the integrated SVD can achieve higher accuracy and lower stochastic variations. The main component of the integration is an optimization problem with a matrix Stiefel manifold constraint. The optimization problem is solved using Kolmogorov-Nagumo-type averages. Our theoretical analyses show that the singular vectors can be induced by population averaging and ensure the consistencies between the computed and true subspaces and singular vectors. Statistical analysis further proves a strong Law of Large Numbers and gives a rate of convergence by the Central Limit Theorem. Preliminary numerical results suggest that the proposed integrated SVD algorithm is promising.
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors representation. In particular we present and analyze a randomized algorithm for the calculation of the hierarchical SVD (HSVD) for the tensor train (TT) format.
This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis. Our model assumes the observed data to be a random realization of an approximate CP low-rank functional tensor measured on a discrete time grid. Incorporating tensor algebra and the theory of Reproducing Kernel Hilbert Space (RKHS), we propose a novel RKHS-based constrained power iteration with spectral initialization. Our method can successfully estimate both singular vectors and functions of the low-rank structure in the observed data. With mild assumptions, we establish the non-asymptotic contractive error bounds for the proposed algorithm. The superiority of the proposed framework is demonstrated via extensive experiments on both simulated and real data.
In this article, we present an $O(N log N)$ rapidly convergent algorithm for the numerical approximation of the convolution integral with radially symmetric weakly singular kernels and compactly supported densities. To achieve the reduced computational complexity, we utilize the Fast Fourier Transform (FFT) on a uniform grid of size $N$ for approximating the convolution. To facilitate this and maintain the accuracy, we primarily rely on a periodic Fourier extension of the density with a suitably large period depending on the support of the density. The rate of convergence of the method increases with increasing smoothness of the periodic extension and, in fact, approximations exhibit super-algebraic convergence when the extension is infinitely differentiable. Furthermore, when the density has jump discontinuities, we utilize a certain Fourier smoothing technique to accelerate the convergence to achieve the quadratic rate in the overall approximation. Finally, we apply the integration scheme for numerical solution of certain partial differential equations. Moreover, we apply the quadrature to obtain a fast and high-order Nystom solver for the solution of the Lippmann-Schwinger integral equation. We validate the performance of the proposed scheme in terms of accuracy as well as computational efficiency through a variety of numerical experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا