Do you want to publish a course? Click here

Guaranteed Functional Tensor Singular Value Decomposition

153   0   0.0 ( 0 )
 Added by Rungang Han
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis. Our model assumes the observed data to be a random realization of an approximate CP low-rank functional tensor measured on a discrete time grid. Incorporating tensor algebra and the theory of Reproducing Kernel Hilbert Space (RKHS), we propose a novel RKHS-based constrained power iteration with spectral initialization. Our method can successfully estimate both singular vectors and functions of the low-rank structure in the observed data. With mild assumptions, we establish the non-asymptotic contractive error bounds for the proposed algorithm. The superiority of the proposed framework is demonstrated via extensive experiments on both simulated and real data.



rate research

Read More

The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors representation. In particular we present and analyze a randomized algorithm for the calculation of the hierarchical SVD (HSVD) for the tensor train (TT) format.
The singular value decomposition (SVD) of large-scale matrices is a key tool in data analytics and scientific computing. The rapid growth in the size of matrices further increases the need for developing efficient large-scale SVD algorithms. Randomized SVD based on one-time sketching has been studied, and its potential has been demonstrated for computing a low-rank SVD. Instead of exploring different single random sketching techniques, we propose a Monte Carlo type integrated SVD algorithm based on multiple random sketches. The proposed integration algorithm takes multiple random sketches and then integrates the results obtained from the multiple sketched subspaces. So that the integrated SVD can achieve higher accuracy and lower stochastic variations. The main component of the integration is an optimization problem with a matrix Stiefel manifold constraint. The optimization problem is solved using Kolmogorov-Nagumo-type averages. Our theoretical analyses show that the singular vectors can be induced by population averaging and ensure the consistencies between the computed and true subspaces and singular vectors. Statistical analysis further proves a strong Law of Large Numbers and gives a rate of convergence by the Central Limit Theorem. Preliminary numerical results suggest that the proposed integrated SVD algorithm is promising.
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone.
255 - Weiping Ma , Yang Feng , Kani Chen 2013
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A multi-step approach is developed that simultaneously estimates the parametric components and the nonparametric function. Under certain regularity conditions, it is shown that the resulting estimators is consistent and asymptotic normal for the parametric part and achieve the optimal rate of convergence for the nonparametric part when the bandwidth is suitably chosen. Simulation results are presented to demonstrate the effectiveness and finite-sample performance of the method. The method is also applied to a SELDI-TOF mass spectrometry data set from a study of liver cancer patients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا