No Arabic abstract
Noise dominates every aspect of near-term quantum computers, rendering it exceedingly difficult to carry out even small computations. In this paper we are concerned with the modelling of noise in NISQ computers. We focus on three error groups that represent the main sources of noise during a computation and present quantum channels that model each source. We engineer a noise model that combines all three noise channels and simulates the evolution of the quantum computer using its calibrated error rates. We run various experiments of our model, showcasing its behaviour compared to other noise models and an IBM quantum computer. We find that our model provides a better approximation of the quantum computers behaviour than the other models. Following this, we use a genetic algorithm to optimize the parameters used by our noise model, bringing the behaviour of the model even closer to the quantum computer. Finally, a comparison between the pre- and post-optimization parameters reveals that, according to our mode, certain operations can be more or less erroneous than the hardware-calibrated parameters show.
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0ldots 0rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Readout errors are a significant source of noise for near term quantum computers. A variety of methods have been proposed to mitigate these errors using classical post processing. For a system with $n$ qubits, the entire readout error profile is specified by a $2^ntimes 2^n$ matrix. Recent proposals to use sub-exponential approximations rely on small and/or short-ranged error correlations. In this paper, we introduce and demonstrate a methodology to categorize and quantify multiqubit readout error correlations. Two distinct types of error correlations are considered: sensitivity of the measurement of a given qubit to the state of nearby spectator qubits, and measurement operator covariances. We deploy this methodology on IBMQ quantum computers, finding that error correlations are indeed small compared to the single-qubit readout errors on IBMQ Melbourne (15 qubits) and IBMQ Manhattan (65 qubits), but that correlations on IBMQ Melbourne are long-ranged and do not decay with inter-qubit distance.
Readout errors on near-term quantum computers can introduce significant error to the empirical probability distribution sampled from the output of a quantum circuit. These errors can be mitigated by classical postprocessing given the access of an experimental emph{response matrix} that describes the error associated with measurement of each computational basis state. However, the resources required to characterize a complete response matrix and to compute the corrected probability distribution scale exponentially in the number of qubits $n$. In this work, we modify standard matrix inversion techniques using two perturbative approximations with significantly reduced complexity and bounded error when the likelihood of high order bitflip events is strongly suppressed. Given a characteristic error rate $q$, our first method recovers the probability of the all-zeros bitstring $p_0$ by sampling only a small subspace of the response matrix before inverting readout error resulting in a relative speedup of $text{poly}left(2^{n} / big(begin{smallmatrix} n w end{smallmatrix}big)right)$, which we motivate using a simplified error model for which the approximation incurs only $O(q^w)$ error for some integer $w$. We then provide a generalized technique to efficiently recover full output distributions with $O(q^w)$ error in the perturbative limit. These approximate techniques for readout error correction may greatly accelerate near term quantum computing applications.
Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling non-local Jordan-Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground state energies of strongly correlated electronic systems.