Do you want to publish a course? Click here

The Geometry of Culture: Analyzing Meaning through Word Embeddings

76   0   0.0 ( 0 )
 Added by Austin Kozlowski
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We demonstrate the utility of a new methodological tool, neural-network word embedding models, for large-scale text analysis, revealing how these models produce richer insights into cultural associations and categories than possible with prior methods. Word embeddings represent semantic relations between words as geometric relationships between vectors in a high-dimensional space, operationalizing a relational model of meaning consistent with contemporary theories of identity and culture. We show that dimensions induced by word differences (e.g. man - woman, rich - poor, black - white, liberal - conservative) in these vector spaces closely correspond to dimensions of cultural meaning, and the projection of words onto these dimensions reflects widely shared cultural connotations when compared to surveyed responses and labeled historical data. We pilot a method for testing the stability of these associations, then demonstrate applications of word embeddings for macro-cultural investigation with a longitudinal analysis of the coevolution of gender and class associations in the United States over the 20th century and a comparative analysis of historic distinctions between markers of gender and class in the U.S. and Britain. We argue that the success of these high-dimensional models motivates a move towards high-dimensional theorizing of meanings, identities and cultural processes.

rate research

Read More

Recent studies have introduced methods for learning acoustic word embeddings (AWEs)---fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only been evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words absolute duration and speaker. At the same time, the representation space of these AWEs is organized such that the distance between words embeddings increases with those words phonetic dissimilarity. Finally, the AWEs exhibit a word onset bias, similar to patterns reported in various studies on human speech processing and lexical access. We argue this is a promising result and encourage further evaluation of AWEs as a potentially useful tool in cognitive science, which could provide a link between speech processing and lexical memory.
Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Psychologists have shown increasing interest in such models, comparing their output to psychological judgments such as similarity, association, priming, and comprehension, raising the question of whether the models could serve as psychological theories. In this article, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are fairly successful models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in perception and action and be capable of flexible combinations in ways that current systems are not. We discuss more promising approaches to grounding NLP systems and argue that they will be more successful with a more human-like, conceptual basis for word meaning.
We present a simple yet effective approach for learning word sense embeddings. In contrast to existing techniques, which either directly learn sense representations from corpora or rely on sense inventories from lexical resources, our approach can induce a sense inventory from existing word embeddings via clustering of ego-networks of related words. An integrated WSD mechanism enables labeling of words in context with learned sense vectors, which gives rise to downstream applications. Experiments show that the performance of our method is comparable to state-of-the-art unsupervised WSD systems.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in addition to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا