Do you want to publish a course? Click here

Word meaning in minds and machines

265   0   0.0 ( 0 )
 Added by Brenden Lake
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Psychologists have shown increasing interest in such models, comparing their output to psychological judgments such as similarity, association, priming, and comprehension, raising the question of whether the models could serve as psychological theories. In this article, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are fairly successful models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in perception and action and be capable of flexible combinations in ways that current systems are not. We discuss more promising approaches to grounding NLP systems and argue that they will be more successful with a more human-like, conceptual basis for word meaning.



rate research

Read More

We discuss an algorithm which produces the meaning of a sentence given meanings of its words, and its resemblance to quantum teleportation. In fact, this protocol was the main source of inspiration for this algorithm which has many applications in the area of Natural Language Processing.
We demonstrate the utility of a new methodological tool, neural-network word embedding models, for large-scale text analysis, revealing how these models produce richer insights into cultural associations and categories than possible with prior methods. Word embeddings represent semantic relations between words as geometric relationships between vectors in a high-dimensional space, operationalizing a relational model of meaning consistent with contemporary theories of identity and culture. We show that dimensions induced by word differences (e.g. man - woman, rich - poor, black - white, liberal - conservative) in these vector spaces closely correspond to dimensions of cultural meaning, and the projection of words onto these dimensions reflects widely shared cultural connotations when compared to surveyed responses and labeled historical data. We pilot a method for testing the stability of these associations, then demonstrate applications of word embeddings for macro-cultural investigation with a longitudinal analysis of the coevolution of gender and class associations in the United States over the 20th century and a comparative analysis of historic distinctions between markers of gender and class in the U.S. and Britain. We argue that the success of these high-dimensional models motivates a move towards high-dimensional theorizing of meanings, identities and cultural processes.
Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers for datasets of size >= 100 sentences. Exploiting the formal similarity of the compositional model of meaning by Coecke et al. (2010) with quantum theory, we create representations for sentences that have a natural mapping to quantum circuits. We use these representations to implement and successfully train two NLP models that solve simple sentence classification tasks on quantum hardware. We describe in detail the main principles, the process and challenges of these experiments, in a way accessible to NLP researchers, thus paving the way for practical Quantum Natural Language Processing.
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
Language representations are known to carry stereotypical biases and, as a result, lead to biased predictions in downstream tasks. While existing methods are effective at mitigating biases by linear projection, such methods are too aggressive: they not only remove bias, but also erase valuable information from word embeddings. We develop new measures for evaluating specific information retention that demonstrate the tradeoff between bias removal and information retention. To address this challenge, we propose OSCaR (Orthogonal Subspace Correction and Rectification), a bias-mitigating method that focuses on disentangling biased associations between concepts instead of removing concepts wholesale. Our experiments on gender biases show that OSCaR is a well-balanced approach that ensures that semantic information is retained in the embeddings and bias is also effectively mitigated.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا