No Arabic abstract
The existence of a large population of Compton thick (CT, $N_{H}>10^{24} cm^{-2}$) AGN is a key ingredient of most Cosmic X-ray background synthesis models. However, direct identification of these sources, especially at high redshift, is difficult due to the flux suppression and complex spectral shape produced by CT obscuration. We explored the Chandra COSMOS Legacy point source catalog, comprising 1855 sources, to select via X-ray spectroscopy, a large sample of CT candidates at high redshift. Adopting a physical model to reproduce the toroidal absorber, and a Monte-Carlo sampling method, we selected 67 individual sources with >5% probability of being CT, in the redshift range $0.04<z<3.5$. The sum of the probabilities above $N_{H}>10^{24} cm^{-2}$, gives a total of 41.9 effective CT, corrected for classification bias. We derive number counts in the 2-10 keV band in three redshift bins. The observed logN-logS is consistent with an increase of the intrinsic CT fraction ($f_{CT}$) from $sim0.30$ to $sim0.55$ from low to high redshift. When rescaled to a common luminosity (log(L$_{rm X}$/erg/s)$=44.5$) we find an increase from $f_{CT}=0.19_{-0.06}^{+0.07}$ to $f_{CT}=0.30_{-0.08}^{+0.10}$ and $f_{CT}=0.49_{-0.11}^{+0.12}$ from low to high z. This evolution can be parametrized as $f_{CT}=0.11_{-0.04}^{+0.05}(1+z)^{1.11pm0.13}$. Thanks to HST-ACS deep imaging, we find that the fraction of CT AGN in mergers/interacting systems increases with luminosity and redshift and is significantly higher than for non-CT AGN hosts.
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
Compton Thick (CT) AGN are a key ingredient of Cosmic X-ray Background (CXB) synthesis models, but are still an elusive component of the AGN population beyond the local Universe. Multi-wavelength surveys are the only way to find them at z > 0.1, and a deep X-ray coverage is crucial in order to clearly identify them among star forming galaxies. As an example, the deep and wide COSMOS survey allowed us to select a total of 34 CT sources. This number is computed from the 64 nominal CT candidates, each counted for its N H probability distribution function. For each of these sources, rich multi-wavelength information is available, and is used to confirm their obscured nature, by comparing the expected AGN luminosity from spectral energy distribution fitting, with the absorption-corrected X-ray luminosity. While Chandra is more efficient, for a given exposure, in detecting CT candidates in current surveys (by a factor ~2), deep XMM-Newton pointings of bright sources are vital to fully characterize their properties: NH distribution above 10^25 cm^-2, reflection intensity etc., all crucial parameters of CXB models. Since luminous CT AGN at high redshift are extremely rare, the future of CT studies at high redshift will have to rely on the large area surveys currently underway, such as XMM-XXL and Stripe82, and will then require dedicated follow-up with XMM-Newton, while waiting for the advent of the ESA mission Athena.
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift towards faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGN and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$leq$z$leq$5.5 ($langle L_{bol} rangle sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $sigma_z$ = 0.052 of our sample at z$geq$2.9. Once we integrate the projected 2pcf up to $pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only a slight increase of the bias factor of COSMOS AGN at z$gtrsim$3 with the typical hosting halo mass of moderate luminosity AGN almost constant with redshift and equal to logM$_h$ = 12.92$^{+0.13}_{-0.18}$ at z=2.8 and log M$_h$ = 12.83$^{+0.12}_{-0.11}$ at z$sim$3.4, respectively. The observed redshift evolution of the bias of COSMOS AGN implies that moderate luminosity AGN still inhabit group-sized halos at z$gtrsim$3, but slightly less massive than observed in different independent studies using X-ray AGN at z$leq2$.
We present the largest high-redshift (3<z<6.85) sample of X-ray-selected active galactic nuclei (AGN) on a contiguous field, using sources detected in the Chandra COSMOS Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift, the other 87 with photometric redshift (z_phot). In this work we treat z_phot as a probability weighted sum of contributions, adding to our sample the contribution of sources with z_phot<3 but z_phot probability distribution >0 at z>3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z>3 and constraining phenomenological models of X-ray background. We compute the AGN space density at z>3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg/s) the space density declines exponentially, dropping by a factor ~20 from z~3 to z~6. The observed decline is ~80% steeper at lower luminosities (43.55 erg/s < logL(2-10 keV) < 44.1 erg/s), from z~3 to z~4.5. We study the space density evolution dividing our sample in optically classified Type 1 and Type 2 AGN. At logL(2-10 keV) > 44.1 erg/s, unobscured and obscured objects may have different evolution with redshift, the obscured component being three times higher at z~5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGN. These models significantly overpredict the number of expected AGN at logL(2-10 keV) > 44.1 erg/s with respect to our data.