Do you want to publish a course? Click here

The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9<z<5.5 using photometric redshift Probability Distribution Functions

58   0   0.0 ( 0 )
 Added by Viola Allevato
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$leq$z$leq$5.5 ($langle L_{bol} rangle sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $sigma_z$ = 0.052 of our sample at z$geq$2.9. Once we integrate the projected 2pcf up to $pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only a slight increase of the bias factor of COSMOS AGN at z$gtrsim$3 with the typical hosting halo mass of moderate luminosity AGN almost constant with redshift and equal to logM$_h$ = 12.92$^{+0.13}_{-0.18}$ at z=2.8 and log M$_h$ = 12.83$^{+0.12}_{-0.11}$ at z$sim$3.4, respectively. The observed redshift evolution of the bias of COSMOS AGN implies that moderate luminosity AGN still inhabit group-sized halos at z$gtrsim$3, but slightly less massive than observed in different independent studies using X-ray AGN at z$leq2$.



rate research

Read More

The existence of a large population of Compton thick (CT, $N_{H}>10^{24} cm^{-2}$) AGN is a key ingredient of most Cosmic X-ray background synthesis models. However, direct identification of these sources, especially at high redshift, is difficult due to the flux suppression and complex spectral shape produced by CT obscuration. We explored the Chandra COSMOS Legacy point source catalog, comprising 1855 sources, to select via X-ray spectroscopy, a large sample of CT candidates at high redshift. Adopting a physical model to reproduce the toroidal absorber, and a Monte-Carlo sampling method, we selected 67 individual sources with >5% probability of being CT, in the redshift range $0.04<z<3.5$. The sum of the probabilities above $N_{H}>10^{24} cm^{-2}$, gives a total of 41.9 effective CT, corrected for classification bias. We derive number counts in the 2-10 keV band in three redshift bins. The observed logN-logS is consistent with an increase of the intrinsic CT fraction ($f_{CT}$) from $sim0.30$ to $sim0.55$ from low to high redshift. When rescaled to a common luminosity (log(L$_{rm X}$/erg/s)$=44.5$) we find an increase from $f_{CT}=0.19_{-0.06}^{+0.07}$ to $f_{CT}=0.30_{-0.08}^{+0.10}$ and $f_{CT}=0.49_{-0.11}^{+0.12}$ from low to high z. This evolution can be parametrized as $f_{CT}=0.11_{-0.04}^{+0.05}(1+z)^{1.11pm0.13}$. Thanks to HST-ACS deep imaging, we find that the fraction of CT AGN in mergers/interacting systems increases with luminosity and redshift and is significantly higher than for non-CT AGN hosts.
We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. 38% of the sources are optically classified Type 1 active galactic nuclei (AGN), 60% are Type 2 AGN and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index and of the intrinsic absorption N(H,z) based on the sources optical classification: Type 1 have a slightly steeper mean photon index than Type 2 AGN, which on the other hand have average intrinsic absorption ~3 times higher than Type 1 AGN. We find that ~15% of Type 1 AGN have N(H,z)>1E22 cm^(-2), i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have L(2-10keV)>$1E44 erg/s. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being for example caused by dust-free material surrounding the inner part of the nuclei. ~18% of Type 2 AGN have N(H,z)<1E22 cm^(-2), and most of these sources have low X-ray luminosities (L(2-10keV)<$1E43 erg/s). We expect a part of these sources to be low-accretion, unobscured AGN lacking of broad emission lines. Finally, we also find a direct proportional trend between N(H,z) and host galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.
We present the largest high-redshift (3<z<6.85) sample of X-ray-selected active galactic nuclei (AGN) on a contiguous field, using sources detected in the Chandra COSMOS Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift, the other 87 with photometric redshift (z_phot). In this work we treat z_phot as a probability weighted sum of contributions, adding to our sample the contribution of sources with z_phot<3 but z_phot probability distribution >0 at z>3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z>3 and constraining phenomenological models of X-ray background. We compute the AGN space density at z>3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg/s) the space density declines exponentially, dropping by a factor ~20 from z~3 to z~6. The observed decline is ~80% steeper at lower luminosities (43.55 erg/s < logL(2-10 keV) < 44.1 erg/s), from z~3 to z~4.5. We study the space density evolution dividing our sample in optically classified Type 1 and Type 2 AGN. At logL(2-10 keV) > 44.1 erg/s, unobscured and obscured objects may have different evolution with redshift, the obscured component being three times higher at z~5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGN. These models significantly overpredict the number of expected AGN at logL(2-10 keV) > 44.1 erg/s with respect to our data.
193 - S. Marchesi , F. Civano , M. Elvis 2015
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift towards faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGN and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
We present the first clustering results of X-ray selected AGN at z~3. Using Chandra X-ray imaging and UVR optical colors from MUSYC photometry in the ECDF-S field, we selected a sample of 58 z~3 AGN candidates. From the optical data we also selected 1385 LBG at 2.8<z< 3.8 with R<25.5. We performed auto-correlation and cross-correlation analyses, and here we present results for the clustering amplitudes and dark matter halo masses of each sample. For the LBG we find a correlation length of r_0,LBG = 6.7 +/- 0.5 Mpc, implying a bias value of 3.5 +/- 0.3 and dark matter (DM) halo masses of log(Mmin/Msun) = 11.8 +/- 0.1. The AGN-LBG cross-correlation yields r_0,AGN-LBG = 8.7 +/- 1.9 Mpc, implying for AGN at 2.8<z<3.8 a bias value of 5.5 +/- 2.0 and DM halo masses of log(Mmin/Msun) = 12.6 +0.5/-0.8. Evolution of dark matter halos in the Lambda CDM cosmology implies that today these z~3 AGN are found in high mass galaxies with a typical luminosity of 7+4/-2 L*.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا