No Arabic abstract
In a recent paper, the authors proposed a general methodology for probabilistic learning on manifolds. The method was used to generate numerical samples that are statistically consistent with an existing dataset construed as a realization from a non-Gaussian random vector. The manifold structure is learned using diffusion manifolds and the statistical sample generation is accomplished using a projected Ito stochastic differential equation. This probabilistic learning approach has been extended to polynomial chaos representation of databases on manifolds and to probabilistic nonconvex constrained optimization with a fixed budget of function evaluations. The methodology introduces an isotropic-diffusion kernel with hyperparameter {epsilon}. Currently, {epsilon} is more or less arbitrarily chosen. In this paper, we propose a selection criterion for identifying an optimal value of {epsilon}, based on a maximum entropy argument. The result is a comprehensive, closed, probabilistic model for characterizing data sets with hidden constraints. This entropy argument ensures that out of all possible models, this is the one that is the most uncertain beyond any specified constraints, which is selected. Applications are presented for several databases.
We derive a hierarchy of closures based on perturbations of well-known entropy-based closures; we therefore refer to them as perturbed entropy-based models. Our derivation reveals final equations containing an additional convective and diffusive term which are added to the flux term of the standard closure. We present numerical simulations for the simplest member of the hierarchy, the perturbed M1 or PM1 model, in one spatial dimension. Simulations are performed using a Runge-Kutta discontinuous Galerkin method with special limiters that guarantee the realizability of the moment variables and the positivity of the material temperature. Improvements to the standard M1 model are observed in cases where unphysical shocks develop in the M1 model.
Semi-supervised learning algorithms typically construct a weighted graph of data points to represent a manifold. However, an explicit graph representation is problematic for neural networks operating in the online setting. Here, we propose a feed-forward neural network capable of semi-supervised learning on manifolds without using an explicit graph representation. Our algorithm uses channels that represent localities on the manifold such that correlations between channels represent manifold structure. The proposed neural network has two layers. The first layer learns to build a representation of low-dimensional manifolds in the input data as proposed recently in [8]. The second learns to classify data using both occasional supervision and similarity of the manifold representation of the data. The channel carrying label information for the second layer is assumed to be silent most of the time. Learning in both layers is Hebbian, making our network design biologically plausible. We experimentally demonstrate the effect of semi-supervised learning on non-trivial manifolds.
This paper proposes a black box based approach for analysing deep neural networks (DNNs). We view a DNN as a function $boldsymbol{f}$ from inputs to outputs, and consider the local robustness property for a given input. Based on scenario optimization technique in robust control design, we learn the score difference function $f_i-f_ell$ with respect to the target label $ell$ and attacking label $i$. We use a linear template over the input pixels, and learn the corresponding coefficients of the score difference function, based on a reduction to a linear programming (LP) problems. To make it scalable, we propose optimizations including components based learning and focused learning. The learned function offers a probably approximately correct (PAC) guarantee for the robustness property. Since the score difference function is an approximation of the local behaviour of the DNN, it can be used to generate potential adversarial examples, and the original network can be used to check whether they are spurious or not. Finally, we focus on the input pixels with large absolute coefficients, and use them to explain the attacking scenario. We have implemented our approach in a prototypical tool DeepPAC. Our experimental results show that our framework can handle very large neural networks like ResNet152 with $6.5$M neurons, and often generates adversarial examples which are very close to the decision boundary.
Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to learn new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
We give a sequential model for noninterference security including probability (but not demonic choice), thus supporting reasoning about the likelihood that high-security values might be revealed by observations of low-security activity. Our novel methodological contribution is the definition of a refinement order and its use to compare security measures between specifications and (their supposed) implementations. This contrasts with the more common practice of evaluating the security of individual programs in isolation. The appropriateness of our model and order is supported by our showing that our refinement order is the greatest compositional relation --the compositional closure-- with respect to our semantics and an elementary order based on Bayes Risk --- a security measure already in widespread use. We also relate refinement to other measures such as Shannon Entropy. By applying the approach to a non-trivial example, the anonymous-majority Three-Judges protocol, we demonstrate by example that correctness arguments can be simplified by the sort of layered developments --through levels of increasing detail-- that are allowed and encouraged by compositional semantics.