Do you want to publish a course? Click here

Perturbed, Entropy-Based Closure for Radiative Transfer

93   0   0.0 ( 0 )
 Added by Martin Frank
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive a hierarchy of closures based on perturbations of well-known entropy-based closures; we therefore refer to them as perturbed entropy-based models. Our derivation reveals final equations containing an additional convective and diffusive term which are added to the flux term of the standard closure. We present numerical simulations for the simplest member of the hierarchy, the perturbed M1 or PM1 model, in one spatial dimension. Simulations are performed using a Runge-Kutta discontinuous Galerkin method with special limiters that guarantee the realizability of the moment variables and the positivity of the material temperature. Improvements to the standard M1 model are observed in cases where unphysical shocks develop in the M1 model.



rate research

Read More

40 - C. Soizea , R. Ghanem , C. Safta 2018
In a recent paper, the authors proposed a general methodology for probabilistic learning on manifolds. The method was used to generate numerical samples that are statistically consistent with an existing dataset construed as a realization from a non-Gaussian random vector. The manifold structure is learned using diffusion manifolds and the statistical sample generation is accomplished using a projected Ito stochastic differential equation. This probabilistic learning approach has been extended to polynomial chaos representation of databases on manifolds and to probabilistic nonconvex constrained optimization with a fixed budget of function evaluations. The methodology introduces an isotropic-diffusion kernel with hyperparameter {epsilon}. Currently, {epsilon} is more or less arbitrarily chosen. In this paper, we propose a selection criterion for identifying an optimal value of {epsilon}, based on a maximum entropy argument. The result is a comprehensive, closed, probabilistic model for characterizing data sets with hidden constraints. This entropy argument ensures that out of all possible models, this is the one that is the most uncertain beyond any specified constraints, which is selected. Applications are presented for several databases.
91 - Di Qi , John Harlim 2021
We propose a Machine Learning (ML) non-Markovian closure modeling framework for accurate predictions of statistical responses of turbulent dynamical systems subjected to external forcings. One of the difficulties in this statistical closure problem is the lack of training data, which is a configuration that is not desirable in supervised learning with neural network models. In this study with the 40-dimensional Lorenz-96 model, the shortage of data (in temporal) is due to the stationarity of the statistics beyond the decorrelation time, thus, the only informative content in the training data is on short-time transient statistics. We adopted a unified closure framework on various truncation regimes, including and excluding the detailed dynamical equations for the variances. The closure frameworks employ a Long-Short-Term-Memory architecture to represent the higher-order unresolved statistical feedbacks with careful consideration to account for the intrinsic instability yet producing stable long-time predictions. We found that this unified agnostic ML approach performs well under various truncation scenarios. Numerically, the ML closure model can accurately predict the long-time statistical responses subjected to various time-dependent external forces that are not (and maximum forcing amplitudes that are relatively larger than those) in the training dataset.
Motivated by the recently proposed parallel orbital-updating approach in real space method, we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers
We present a general and convenient first principle method to study near-field radiative heat transfer. We show that the Landauer-like expression of heat flux can be expressed in terms of a frequency and wave-vector dependent macroscopic dielectric function which can be obtained from the linear response density functional theory. A random phase approximation is used to calculate the response function. We computed the heat transfer in three systems -- graphene, molybdenum disulfide (MoS$_2$), and hexagonal boron nitride (h-BN). Our results show that the near-field heat flux exceeds the blackbody limit up to four orders of magnitude. With the increase of the distances between two parallel sheets, a $1/d^2$ dependence of heat flux is shown, consistent with Coulombs law. The heat transfer capacity is sensitive to the dielectric properties of materials. Influences from chemical potential and temperature are also discussed. Our method can be applied to a wide range of materials including systems with inhomogeneities.
53 - Qiang Du , Xiaochuan Tian 2017
Nonlocal gradient operators are basic elements of nonlocal vector calculus that play important roles in nonlocal modeling and analysis. In this work, we extend earlier analysis on nonlocal gradient operators. In particular, we study a nonlocal Dirichlet integral that is given by a quadratic energy functional based on nonlocal gradients. Our main finding, which differs from claims made in previous studies, is that the coercivity and stability of this nonlocal continuum energy functional may hold for some properly chosen nonlocal interaction kernels but may fail for some other ones. This can be significant for possible applications of nonlocal gradient operators in various nonlocal models. In particular, we discuss some important implications for the peridynamic correspondence material models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا