No Arabic abstract
Formal Concept Analysis and its associated conceptual structures have been used to support exploratory search through conceptual navigation. Relational Concept Analysis (RCA) is an extension of Formal Concept Analysis to process relational datasets. RCA and its multiple interconnected structures represent good candidates to support exploratory search in relational datasets, as they are enabling navigation within a structure as well as between the connected structures. However, building the entire structures does not present an efficient solution to explore a small localised area of the dataset, for instance to retrieve the closest alternatives to a given query. In these cases, generating only a concept and its neighbour concepts at each navigation step appears as a less costly alternative. In this paper, we propose an algorithm to compute a concept and its neighbourhood in extended concept lattices. The concepts are generated directly from the relational context family, and possess both formal and relational attributes. The algorithm takes into account two RCA scaling operators. We illustrate it on an example.
Causal inference is at the heart of empirical research in natural and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortunately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in statistical studies and social sciences. However, existing methods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world settings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions and specifying causal queries using simple Datalog-like rules.CaRL provides a foundation for inferring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.
Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions.
The study of causality or causal inference - how much a given treatment causally affects a given outcome in a population - goes way beyond correlation or association analysis of variables, and is critical in making sound data driven decisions and policies in a multitude of applications. The gold standard in causal inference is performing controlled experiments, which often is not possible due to logistical or ethical reasons. As an alternative, inferring causality on observational data based on the Neyman-Rubin potential outcome model has been extensively used in statistics, economics, and social sciences over several decades. In this paper, we present a formal framework for sound causal analysis on observational datasets that are given as multiple relations and where the population under study is obtained by joining these base relations. We study a crucial condition for inferring causality from observational data, called the strong ignorability assumption (the treatment and outcome variables should be independent in the joined relation given the observed covariates), using known conditional independences that hold in the base relations. We also discuss how the structure of the conditional independences in base relations given as graphical models help infer new conditional independences in the joined relation. The proposed framework combines concepts from databases, statistics, and graphical models, and aims to initiate new research directions spanning these fields to facilitate powerful data-driven decisions in todays big data world.
In this paper, we propose the DN-tree that is a data structure to build lossy summaries of the frequent data access patterns of the queries in a distributed graph data management system. These compact representations allow us an efficient communication of the data structure in distributed systems. We exploit this data structure with a new textit{Dynamic Data Partitioning} strategy (DYDAP) that assigns the portions of the graph according to historical data access patterns, and guarantees a small network communication and a computational load balance in distributed graph queries. This method is able to adapt dynamically to new workloads and evolve when the query distribution changes. Our experiments show that DYDAP yields a throughput up to an order of magnitude higher than previous methods based on cache specialization, in a variety of scenarios, and the average response time of the system is divided by two.
We present a new approach to e-matching based on relational join; in particular, we apply recent database query execution techniques to guarantee worst-case optimal run time. Compared to the conventional backtracking approach that always searches the e-graph top down, our new relational e-matching approach can better exploit pattern structure by searching the e-graph according to an optimized query plan. We also establish the first data complexity result for e-matching, bounding run time as a function of the e-graph size and output size. We prototyped and evaluated our technique in the state-of-the-art egg e-graph framework. Compared to a conventional baseline, relational e-matching is simpler to implement and orders of magnitude faster in practice.