Do you want to publish a course? Click here

Causal Relational Learning

276   0   0.0 ( 0 )
 Added by Babak Salimi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Causal inference is at the heart of empirical research in natural and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortunately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in statistical studies and social sciences. However, existing methods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world settings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions and specifying causal queries using simple Datalog-like rules.CaRL provides a foundation for inferring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.



rate research

Read More

Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions.
61 - Alexandre Bazin 2018
Formal Concept Analysis and its associated conceptual structures have been used to support exploratory search through conceptual navigation. Relational Concept Analysis (RCA) is an extension of Formal Concept Analysis to process relational datasets. RCA and its multiple interconnected structures represent good candidates to support exploratory search in relational datasets, as they are enabling navigation within a structure as well as between the connected structures. However, building the entire structures does not present an efficient solution to explore a small localised area of the dataset, for instance to retrieve the closest alternatives to a given query. In these cases, generating only a concept and its neighbour concepts at each navigation step appears as a less costly alternative. In this paper, we propose an algorithm to compute a concept and its neighbourhood in extended concept lattices. The concepts are generated directly from the relational context family, and possess both formal and relational attributes. The algorithm takes into account two RCA scaling operators. We illustrate it on an example.
We present a relational graph learning approach for robotic crowd navigation using model-based deep reinforcement learning that plans actions by looking into the future. Our approach reasons about the relations between all agents based on their latent features and uses a Graph Convolutional Network to encode higher-order interactions in each agents state representation, which is subsequently leveraged for state prediction and value estimation. The ability to predict human motion allows us to perform multi-step lookahead planning, taking into account the temporal evolution of human crowds. We evaluate our approach against a state-of-the-art baseline for crowd navigation and ablations of our model to demonstrate that navigation with our approach is more efficient, results in fewer collisions, and avoids failure cases involving oscillatory and freezing behaviors.
This tutorial overviews the state of the art in learning models over relational databases and makes the case for a first-principles approach that exploits recent developments in database research. The input to learning classification and regression models is a training dataset defined by feature extraction queries over relational databases. The mainstream approach to learning over relational data is to materialize the training dataset, export it out of the database, and then learn over it using a statistical package. This approach can be expensive as it requires the materialization of the training dataset. An alternative approach is to cast the machine learning problem as a database problem by transforming the data-intensive component of the learning task into a batch of aggregates over the feature extraction query and by computing this batch directly over the input database. The tutorial highlights a variety of techniques developed by the database theory and systems communities to improve the performance of the learning task. They rely on structural properties of the relational data and of the feature extraction query, including algebraic (semi-ring), combinatorial (hypertree width), statistical (sampling), or geometric (distance) structure. They also rely on factorized computation, code specialization, query compilation, and parallelization.
F-IVM is a system for real-time analytics such as machine learning applications over training datasets defined by queries over fast-evolving relational databases. We will demonstrate F-IVM for three such applications: model selection, Chow-Liu trees, and ridge linear regression.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا